Mayor's posters
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 64939   Accepted: 18770

Description

The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:

  • Every candidate can place exactly one poster on the wall.
  • All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
  • The wall is divided into segments and the width of each segment is one byte.
  • Each poster must completely cover a contiguous number of wall segments.

They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections. 
Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall. 

Input

The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers li and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= li <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered li, li+1 ,... , ri.

Output

For each input data set print the number of visible posters after all the posters are placed.

The picture below illustrates the case of the sample input. 

Sample Input

1
5
1 4
2 6
8 10
3 4
7 10

Sample Output

4

题意:

$N$个人$(1\leq N\leq10^4)$依次贴$N$张等高的海报,给出每张海报的左端点,右端点$l_i,r_i$。$(1\leq l_i\leq r_i\leq10^7)$

后面的海报可能会把前面的海报盖住。问最后能看见几张海报。

题解:

一个比较明显的线段树区间染色问题。但是端点范围太大,直接开数组明显不可行。

所以还要离散化一下。所谓的离散化,就是将一个很大的区间映射成一个很小的区间,而不改变原有的覆盖关系。

但是对于这道题而言,简单的离散化可能会出现错误。

比如说:

例子一:$[1,10][1,4][5,10]$

例子二:$[1,10][1,4][6,10]$

它们普通离散化后都变成了$[1,4][1,2][3,4]$。

线段$2$覆盖了$[1,2]$,线段$3$覆盖了$[3,4]$,那么线段$1$是否被覆盖掉了呢?

例子一是被覆盖掉了,而例子二没有被覆盖。

解决的办法,就是在距离$\geq 1$的两个相邻节点间插入一个点,保证准确性。

代码:

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
struct node{int l,r;}a[]; //节点信息
int N,ans;
int c[]; //区间每个点的颜色
bool vis[]; //记录颜色访问信息
int x[]; //离散化后的区间
inline int read(){
int x=,f=;
char c=getchar();
for(;!isdigit(c);c=getchar())
if(c=='-')
f=-;
for(;isdigit(c);c=getchar())
x=x*+c-'';
return x*f;
}
void cover(int num){
if(c[num]!=-){
c[num<<]=c[num<<|]=c[num];
c[num]=-;
}
}
void update(int L,int R,int col,int l,int r,int num){
//如果这个点在需要染色的区间内,直接更新并且返回
if(l>=L && r<=R){
c[num]=col;
return;
}
cover(num); //更新
int mid=(l+r)>>;
if(L<=mid) update(L,R,col,l,mid,num<<); //更新左儿子
if(R>mid) update(L,R,col,mid+,r,num<<|); //更新右儿子
}
void query(int l,int r,int num){
//累加未出现的颜色
if(c[num]!=-){
if(!vis[c[num]]) ans++;
vis[c[num]]=;
return;
}
if(l==r) return; //如果到了叶子则返回
int mid=(l+r)>>;
query(l,mid,num<<); //统计左儿子
query(mid+,r,num<<|); //统计右儿子
}
int main(){
int T=read();
while(T--){
memset(c,-,sizeof(c));
memset(vis,,sizeof(vis));
N=read();ans=;
int p=; //输入点数
int q=; //离散化后点数
for(int i=;i<N;i++){
a[i].l=read();a[i].r=read();
x[p++]=a[i].l;x[p++]=a[i].r;
}
sort(x,x+p);
//去重操作
for(int i=;i<p;i++)
if(x[i]!=x[i-])
x[q++]=x[i];
//离散化操作
for(int i=q-;i>=;i--)
if(x[i]>x[i-]+)
x[q++]=x[i-]+;
sort(x,x+q);
//染色操作
for(int i=;i<N;i++){
int l=lower_bound(x,x+q,a[i].l)-x;
int r=lower_bound(x,x+q,a[i].r)-x;
update(l,r,i,,q,);
}
//统计操作
query(,q,);
printf("%d\n",ans);
}
return ;
}

【poj2528】Mayor's posters的更多相关文章

  1. 【poj2528】Mayor's posters

    Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 59254   Accepted: 17167 Description The ...

  2. 【SDOJ 3741】 【poj2528】 Mayor's posters

    Description The citizens of Bytetown, AB, could not stand that the candidates in the mayoral electio ...

  3. 【线段树】Mayor's posters

    [poj2528]Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 66154   Accept ...

  4. 【POJ 2528】Mayor’s posters(线段树+离散化)

    题目 给定每张海报的覆盖区间,按顺序覆盖后,最后有几张海报没有被其他海报完全覆盖.离散化处理完区间端点,排序后再给相差大于1的相邻端点之间再加一个点,再排序.线段树,tree[i]表示节点i对应区间是 ...

  5. 【hdu】Mayor&#39;s posters(线段树区间问题)

    须要离散化处理,线段树的区间改动问题. 须要注意的就是离散化的时候,由于给的数字是一段单位长度,所以须要特殊处理(由于线段的覆盖和点的覆盖是不一样的) 比方:(1,10)(1,4) (6,10) 离散 ...

  6. POJ2528 Uva10587 Mayor's posters

    The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign h ...

  7. POJ 2528 Mayor's posters(线段树+离散化)

    Mayor's posters 转载自:http://blog.csdn.net/winddreams/article/details/38443761 [题目链接]Mayor's posters [ ...

  8. 线段树---poj2528 Mayor’s posters【成段替换|离散化】

    poj2528 Mayor's posters 题意:在墙上贴海报,海报可以互相覆盖,问最后可以看见几张海报 思路:这题数据范围很大,直接搞超时+超内存,需要离散化: 离散化简单的来说就是只取我们需要 ...

  9. POJ2528 Mayor&#39;s posters 【线段树】+【成段更新】+【离散化】

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 39795   Accepted: 11552 ...

随机推荐

  1. mysql读写分离(主从复制)实现

    mysql主从复制 怎么安装mysql数据库,这里不说了,仅仅说它的主从复制.过程例如以下: 主从最好都是同一种系统比方都是linux,或者都是windows,当然混合着也是能够成功,不解释了 1.主 ...

  2. struct与 union的基本用法

    结构体与联合体是C语言的常见数据类型,可对C的基本数据类型进行组合使之能表示复杂的数据结构,意义深远,是优异代码的必备工具.一.        struct与 union的基本用法,在语法上union ...

  3. 0 lrwxrwxrwx. 1 root root 13 Nov 20 12:44 scala -> scala-2.12.4

    符号链接的文件属性相同,真正的权限属性由符号链接所指向的实际文件决定.

  4. Java中数组复制的几种方式以及数组合并

    1.Object.clone() 简单直接,只能对源数组完整地复制 2.Arrays.copyOf(T[] original, int newLength) 可以只复制源数组中部分元素,但复制的起始位 ...

  5. mini_magick

    https://github.com/minimagick/minimagick class  https://www.rubydoc.info/github/minimagick/minimagic ...

  6. ruby hash排序

    参考文章:http://blog.csdn.net/ppp8300885/article/details/49933305 a={a:1,b:20,c:3,d:0,e:7}逆序 a.sort{|k,v ...

  7. UICollectionView基础用法

    初始化部分: UICollectionViewFlowLayout *flowLayout= [[UICollectionViewFlowLayout alloc]init]; self.myColl ...

  8. Hive两种访问方式:HiveServer2 和 Hive Client

        老版HiveClient:  要求比较多,需要Hive和Hadoop的jar包,各配置环境.       HiveServer2:   使得与YARN和HDFS的连接从Client中独立出来, ...

  9. [Selenium] IOS 之 ios-driver

    从 Selenium 的官方文档来看,推荐用户使用 ios-driver 或 appium 而不是官方发布的 iPone Driver. 他们的地址分别是: http://ios-driver.git ...

  10. 2018.8.10Yukimai模拟Day1

    这的确是最惨的一次模拟了……不会再惨了(10pts除非爆零orz) 总结一下吧…… T1 .章鱼 众所周知,雪舞喵有许多猫.由于最近的天气十分炎热,雪舞城的大魔法师雪月月根本不想出门,只想宅在家里打隔 ...