Description

Longge is good at mathematics and he likes to think about hard mathematical problems which will be solved by some graceful algorithms. Now a problem comes: Given an integer N(1 < N < 2^31),you are to calculate ∑gcd(i, N) 1<=i <=N. 
"Oh, I know, I know!" Longge shouts! But do you know? Please solve it. 

Input

Input contain several test case. 
A number N per line. 

Output

For each N, output ,∑gcd(i, N) 1<=i <=N, a line

Sample Input

2
6

Sample Output

3
15
解题思路:给出一个数n,求1-n这n个数与n的最大公约数之和。举个栗子:当n=4时,1,2,3,4与4的最大公约数分别为1,2,1,4,累加和为8。正解:1-n中每个数与n的最大公约数肯定是n的一个因子,所以我们只需要枚举n的每一个因子x∈[1,√n],然后看有多少个满足gcd(k,n)==x,即求满足gcd(k/x,n/x)==1中k的个数(用欧拉函数求解),则公式为:∑x*[gcd(k/x,n/x)==1]。
AC代码(204ms):
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <map>
#include <vector>
#include <set>
using namespace std;
typedef long long LL;
const int maxn = 1e6+;
LL n, ans;
LL get_Euler(LL x){
LL res = x;
for(LL i = 2LL; i * i <= x; ++i) {
if(x % i == ) {
res = res / i * (i - );
while(x % i == ) x /= i;
}
}
if(x > 1LL) res = res / x * (x - );
return res;
} int main(){
while(cin >> n) {
ans = 0LL;
for (LL i = 1LL; i * i <= n; ++i) {
if(n % i == ) {
ans += i * get_Euler(n / i);
if(i * i != n) ans += n / i * get_Euler(i); ///避免重复计数
}
}
cout << ans << endl;
}
return ;
}
AC代码二(32ms):思路和上面相同,只是将问题求解转换一下gcd(i, n) == (p_i)^j,即求Σ(p_i)^j [gcd(i/((p_i)^j)), n/((p_i)^j)==1],化简公式得 (k+1)* p^k - k*p^(k-1),再根据积性函数的性质得n的欧拉函数值为每种素因子对应的欧拉函数值φ((p_i)^a_i)相乘即可。时间复杂度是O(sqrt(n))。具体推导过程:传送门
 #include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long LL;
LL n;
LL solve(LL x) {
LL p_i, k, ans = 1LL;
for(LL i = 2LL; i * i <= x; ++i) {
if(x % i == ) {
p_i = 1LL, k = ;
while(x % i == ) {k++, p_i *= i, x /= i;}
ans *= (k + ) * p_i - k * p_i / i; ///(k+1)*p^k - k*p^(k-1)
}
}
if(x > 1LL) ans *= * x - 1LL;
return ans;
}
int main() {
while(cin >> n) {
cout << solve(n) << endl;
}
return ;
}

题解报告:poj 2480 Longge's problem(欧拉函数)的更多相关文章

  1. poj 2480 Longge's problem [ 欧拉函数 ]

    传送门 Longge's problem Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7327   Accepted: 2 ...

  2. POJ 2480 Longge's problem 欧拉函数—————∑gcd(i, N) 1<=i <=N

    Longge's problem Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6383   Accepted: 2043 ...

  3. poj 2480 Longge's problem 欧拉函数+素数打表

    Longge's problem   Description Longge is good at mathematics and he likes to think about hard mathem ...

  4. 题解报告:hdu 2588 GCD(欧拉函数)

    Description The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written ...

  5. poj 2480 Longge's problem 积性函数

    思路:首先给出几个结论: 1.gcd(a,b)是积性函数: 2.积性函数的和仍然是积性函数: 3.phi(a^b)=a^b-a^(b-1); 记 f(n)=∑gcd(i,n),n=p1^e1*p2^e ...

  6. POJ 2480 Longge's problem (积性函数,欧拉函数)

    题意:求∑gcd(i,n),1<=i<=n思路:f(n)=∑gcd(i,n),1<=i<=n可以知道,其实f(n)=sum(p*φ(n/p)),其中p是n的因子.为什么呢?原因 ...

  7. poj 2480 Longge's problem

    /** 大意: 计算f(n) = ∑ gcd(i, N) 1<=i <=N. 思路: gcd(i,x*y) = gcd(i,x) * gcd(i, y ) 所以gcd 为积性函数 又因为积 ...

  8. POJ 2478 Farey Sequence(欧拉函数前n项和)

    A - Farey Sequence Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u ...

  9. Bzoj 2705: [SDOI2012]Longge的问题 欧拉函数,数论

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1959  Solved: 1229[Submit][ ...

随机推荐

  1. appium server参数

    转自: http://m.blog.csdn.net/blog/kittyboy0001/40893979 appium Appium是一个开源的,适用于原生或混合移动应用应用( hybrid mob ...

  2. run as maven test报错解决办法

    eclipse中使用maven插件的时候,运行run as maven build的时候报错 -Dmaven.multiModuleProjectDirectory system propery is ...

  3. Hadoop之HDFS文件操作

    摘要:Hadoop之HDFS文件操作常有两种方式.命令行方式和JavaAPI方式.本文介绍怎样利用这两种方式对HDFS文件进行操作. 关键词:HDFS文件    命令行     Java API HD ...

  4. gdb调试使用autotools工程的项目

    1 保留debug sympol和优化等级设置为-O0的最简单的方法 在执行configure脚本生成Makefile文件时,使用CXXFLAGS宏,因为标准的configure脚本给了这个宏. .. ...

  5. CSS 媒体类型 总结

    CSS 媒体类型 媒体类型允许你指定文件将如何在不同媒体呈现.该文件可以以不同的方式显示在屏幕上,在纸张上,或听觉浏览器等等. 媒体类型 一些CSS属性只设计了某些媒体.例如"voice-f ...

  6. 在C语言中使用libb64进行Base64编解码

    libb64下载地址http://sourceforge.net/projects/libb64 以下为Demo libb64_demo.c #include <stdio.h> #inc ...

  7. thinkphp中的volist

    在thinkphp中,使用volist一定要注意,<volist name='' id=''></volist>,name和id的变量一定要不一致,如果一致的话会导致当voli ...

  8. XMU C语言程序设计实践(3)

    问题描述: 以一个n的长方阵表示迷宫,0和1分别表示迷宫中的通路和障碍,设计一个程序,对任意设定的迷宫,求出一条从入口到出口的通路,或得出没有通路的结论. 对于本问题需用栈实现“穷举求解”算法,即:从 ...

  9. 【Selenium】显示、隐式等待

    显示等待 WebDriverWait 超时抛出TimeOutException,默认500毫秒 public class WaitToReturnElement { /* * 设置超时时间为5秒,返回 ...

  10. windows上搭建php环境

    在Windows 7下进行PHP环境搭建,首先需要下载PHP代码包和Apache与Mysql的安装软件包. PHP版本:php-5.3.2-Win32-VC6-x86,VC9是专门为IIS定制的,VC ...