SPOJ FAVDICE 数学期望
题目大意:
一个有n面的色子抛掷多少次能使所有面都能被抛到过,求期望值
总面数为n,当已经抛到过 i 个不同面时,我们抛出下一个不同面的概率为 (n-i)/n,那么抛的次数为 n/(n-i)
将所有抛出下个面的次数累加起来就好了
#include <cstdio>
int main(){
int kase,n;
scanf("%d",&kase);
while(kase--){
scanf("%d",&n);
double ans = ;
for(int i = ;i <= n;i++) ans += (n+0.0)/(i+0.0);
printf("%.2f\n",ans);
}
return ;
}
SPOJ FAVDICE 数学期望的更多相关文章
- SPOJ - FAVDICE 简单期望
dp[0]=0; // rep(i,1,n) dp[i]=(double)(n-i)/n*dp[i-1]+1+(double)(i)/n*dp[i]; // (n-i)/n dp[i]= n-i / ...
- 【整理】简单的数学期望和概率DP
数学期望 P=Σ每一种状态*对应的概率. 因为不可能枚举完所有的状态,有时也不可能枚举完,比如抛硬币,有可能一直是正面,etc.在没有接触数学期望时看到数学期望的题可能会觉得很阔怕(因为我高中就是这么 ...
- [BZOJ 3143][HNOI2013]游走(数学期望)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3143 分析: 易得如果知道了每条边经过的数学期望,那就可以贪心着按每条边的期望的大小赋 ...
- Codeforces Round #259 (Div. 2) C - Little Pony and Expected Maximum (数学期望)
题目链接 题意 : 一个m面的骰子,掷n次,问得到最大值的期望. 思路 : 数学期望,离散时的公式是E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) p(xi)的是 ...
- 数学期望和概率DP题目泛做(为了对应AD的课件)
题1: Uva 1636 Headshot 题目大意: 给出一个000111序列,注意实际上是环状的.问是0出现的概率大,还是当前是0,下一个还是0的概率大. 问题比较简单,注意比较大小: A/C & ...
- [2013山东ACM]省赛 The number of steps (可能DP,数学期望)
The number of steps nid=24#time" style="padding-bottom:0px; margin:0px; padding-left:0px; ...
- 【BZOJ2134】单位错选(数学期望,动态规划)
[BZOJ2134]单位错选(数学期望,动态规划) 题面 BZOJ 题解 单独考虑相邻的两道题目的概率就好了 没了呀.. #include<iostream> #include<cs ...
- 【BZOJ1415】【NOI2005】聪聪和可可(动态规划,数学期望)
[BZOJ1415][NOI2005]聪聪和可可(动态规划,数学期望) 题面 BZOJ 题解 先预处理出当可可在某个点,聪聪在某个点时 聪聪会往哪里走 然后记忆化搜索一下就好了 #include< ...
- 【Luogu1291】百事世界杯之旅(动态规划,数学期望)
[Luogu1291]百事世界杯之旅(动态规划,数学期望) 题面 洛谷 题解 设\(f[i]\)表示已经集齐了\(i\)个名字的期望 现在有两种方法: 先说我自己的: \[f[i]=f[i-1]+1+ ...
随机推荐
- python工具之exccel模板生成报表
from Db import Db from log import log import xlwt import xlrd from xlutils.copy import copy import s ...
- Java基础50题test4—分解质因数
[分解质因数] 题目:将一个正整数分解质因数.例如:输入 90,打印出 90=2*3*3*5. 程序分析:对 n 进行分解质因数,应先找到一个最小的质数 k,然后按下述步骤完成: (1)如果这个质数恰 ...
- Spring-aop(一)
写一个计算类,计算前后需要打印日志. interface ArithmeticCalculator { public int add(int i, int j); public int sub(int ...
- 公有云大脑——核心IDC简影
出差刚到家,公司最近接了一个矿场转建公有云平台的项目. 前期200台服务器作为公有云基础. 我主要负责总体网络规划.计费数据库集群设计.ceph集群自动部署.容器化设计.硬件及系统调试优化等等! 由于 ...
- 【数据分析 R语言实战】学习笔记 第六章 参数估计与R实现(下)
6.3两正态总体的区间估计 (1)两个总体的方差已知 在R中编写计算置信区间的函数twosample.ci()如下,输入参数为样本x, y,置信度α和两个样本的标准差. > twosample. ...
- 【数据分析 R语言实战】学习笔记 第五章 数据的描述性分析(下)
5.6 多组数据分析及R实现 5.6.1 多组数据的统计分析 > group=read.csv("C:/Program Files/RStudio/002582.csv") ...
- Android Studio -自定义LogCat的颜色
博文地址 http://www.cnblogs.com/Loonger/p/6285344.html 先看看效果 (设置中的显示,下图) 步骤如下 File->Settings 或Ctrl + ...
- libcmt.lb libcmtd.lib与MSVCRTD.lib的冲突解决
system("pause"); 这个函数存在于MSVCRTD.lib库中: 当要使用system("pause")这个函数,且libcmt.lb libcmt ...
- Linux-04 Linux中Tomcat和MySQL的安装
1.下载apache-tomcat-7.0.79-tar.tar2.解压到当前用户目录,改名为tomcat [hduser@node1 ~]$ tar -zxvf apache-tomcat-7.0. ...
- 在Foxmail邮件客户端登录263企业邮箱
一.问题描述 首次用Foxmail登录263企业,输入账号和密码,创建 二.问题分析 客户端配置地址: 协议类型 服务器地址 默认端 加密端(SSL) POP pop.263.net 110 1995 ...