#define xhxj (Xin Hang senior sister(学姐)) 
If you do not know xhxj, then carefully reading the entire description is very important. 
As the strongest fighting force in UESTC, xhxj grew up in Jintang, a border town of Chengdu. 
Like many god cattles, xhxj has a legendary life: 
2010.04, had not yet begun to learn the algorithm, xhxj won the second prize in the university contest. And in this fall, xhxj got one gold medal and one silver medal of regional contest. In the next year's summer, xhxj was invited to Beijing to attend the astar onsite. A few months later, xhxj got two gold medals and was also qualified for world's final. However, xhxj was defeated by zhymaoiing in the competition that determined who would go to the world's final(there is only one team for every university to send to the world's final) .Now, xhxj is much more stronger than ever,and she will go to the dreaming country to compete in TCO final. 
As you see, xhxj always keeps a short hair(reasons unknown), so she looks like a boy( I will not tell you she is actually a lovely girl), wearing yellow T-shirt. When she is not talking, her round face feels very lovely, attracting others to touch her face gently。Unlike God Luo's, another UESTC god cattle who has cool and noble charm, xhxj is quite approachable, lively, clever. On the other hand,xhxj is very sensitive to the beautiful properties, "this problem has a very good properties",she always said that after ACing a very hard problem. She often helps in finding solutions, even though she is not good at the problems of that type. 
Xhxj loves many games such as,Dota, ocg, mahjong, Starcraft 2, Diablo 3.etc,if you can beat her in any game above, you will get her admire and become a god cattle. She is very concerned with her younger schoolfellows, if she saw someone on a DOTA platform, she would say: "Why do not you go to improve your programming skill". When she receives sincere compliments from others, she would say modestly: "Please don’t flatter at me.(Please don't black)."As she will graduate after no more than one year, xhxj also wants to fall in love. However, the man in her dreams has not yet appeared, so she now prefers girls. 
Another hobby of xhxj is yy(speculation) some magical problems to discover the special properties. For example, when she see a number, she would think whether the digits of a number are strictly increasing. If you consider the number as a string and can get a longest strictly increasing subsequence the length of which is equal to k, the power of this number is k.. It is very simple to determine a single number’s power, but is it also easy to solve this problem with the numbers within an interval? xhxj has a little tired,she want a god cattle to help her solve this problem,the problem is: Determine how many numbers have the power value k in [L,R] in O(1)time. 
For the first one to solve this problem,xhxj will upgrade 20 favorability rate。

InputFirst a integer T(T<=10000),then T lines follow, every line has three positive integer L,R,K.( 
0<L<=R<2 63-1 and 1<=K<=10).OutputFor each query, print "Case #t: ans" in a line, in which t is the number of the test case starting from 1 and ans is the answer.Sample Input

1
123 321 2

Sample Output

Case #1: 139 

题意:就是说给你一个区间l-r,问你满足数位上最长上升序列长度为k。
题解:
  数位dp,因为对于每个数,最终都会有一个最长上升序列的状态,
  所以根据这个来记录状态f[i][j][k]表示到了i位,上升的状态为j,长度为k,j中用二进制表示,
  因为前面的一定小。
 #include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<cstdio>
#define ll long long
using namespace std; int Case=;
int a[],k;
ll f[][<<][],l,r; inline int get_new(int x,int s)
{
for (int i=x;i<;i++)
if (s&(<<i)) return (s^(<<i))|(<<x);
return s|(<<x);
}
inline int get(int s)
{
int res=;
while(s)
{
if (s&) res++;
s>>=;
}
return res;
}
ll dfs(int wei,int s,bool e,bool flag)
{
if (wei==) return get(s)==k;
if (!e&&f[wei][s][k]!=-) return f[wei][s][k];
ll res=;
int ed;
if (e) ed=a[wei];
else ed=;
for (int i=;i<=ed;i++)
res+=dfs(wei-,(flag&&i==)?:get_new(i,s),e&&i==ed,flag&&(i==));
if (!e) f[wei][s][k]=res;
return res;
}
ll solve(ll x)
{
int len=;
while(x)
{
a[++len]=x%;
x/=;
}
return dfs(len,,,);
}
int main()
{
memset(f,-,sizeof(f));
int cas;scanf("%d",&cas);
while(cas--)
{
scanf("%lld%lld%d",&l,&r,&k);
printf("Case #%d: %lld\n",++Case,solve(r)-solve(l-));
}
}
 

hdu4352 XHXJ's LIS(数位DP + LIS + 状态压缩)的更多相关文章

  1. HDU 4352 XHXJ&#39;s LIS(数位dp&amp;状态压缩)

    题目链接:[kuangbin带你飞]专题十五 数位DP B - XHXJ's LIS 题意 给定区间.求出有多少个数满足最长上升子序列(将数看作字符串)的长度为k. 思路 一个数的上升子序列最大长度为 ...

  2. HDU 4352 XHXJ's LIS (数位DP+LIS+状态压缩)

    题意:给定一个区间,让你求在这个区间里的满足LIS为 k 的数的数量. 析:数位DP,dp[i][j][k] 由于 k 最多是10,所以考虑是用状态压缩,表示 前 i 位,长度为 j,状态为 k的数量 ...

  3. HDU 4352 XHXJ's LIS 数位dp lis

    目录 题目链接 题解 代码 题目链接 HDU 4352 XHXJ's LIS 题解 对于lis求的过程 对一个数列,都可以用nlogn的方法来的到它的一个可行lis 对这个logn的方法求解lis时用 ...

  4. Codeforces Round #235 (Div. 2) D. Roman and Numbers (数位dp、状态压缩)

    D. Roman and Numbers time limit per test 4 seconds memory limit per test 512 megabytes input standar ...

  5. HDU 4352 - XHXJ's LIS - [数位DP][LIS问题]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4352 Time Limit: 2000/1000 MS (Java/Others) Memory Li ...

  6. [BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩)

    [BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩) 题面 给出一棵树和一个图,点数均为n,问有多少种方法把树的节点标号,使得对于树上的任意两个节点u,v,若树上u ...

  7. hdu 4352 XHXJ's LIS 数位dp+状态压缩

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4352 XHXJ's LIS Time Limit: 2000/1000 MS (Java/Others ...

  8. hdu4352 XHXJ's LIS[数位DP套状压DP+LIS$O(nlogn)$]

    统计$[L,R]$内LIS长度为$k$的数的个数,$Q \le 10000,L,R < 2^{63}-1,k \le 10$. 首先肯定是数位DP.然后考虑怎么做这个dp.如果把$k$记录到状态 ...

  9. hdu_4352_XHXJ's LIS(数位DP+状态压缩)

    题目连接:hdu_4352_XHXJ's LIS 题意:这题花大篇篇幅来介绍电子科大的一个传奇学姐,最后几句话才是题意,这题意思就是给你一个LL范围内的区间,问你在这个区间内最长递增子序列长度恰为K的 ...

随机推荐

  1. Centos系统安装 phpredis 扩展

    Git地址:https://github.com/nicolasff/phpredis 一.安装: phpize ./configure make && make install 其中 ...

  2. linux的top下buffer与cache的区别

    buffer:    缓冲区,一个用于存储速度不同步的设备或优先级不同的设备之间传输数据 的区域.通过缓冲区,可以使进程之间的相互等待变少,从而使从速度慢的设备读入数据 时,速度快的设备的操作进程不发 ...

  3. 移动端1px边框伪类宽高计算

    移动端1px边框在手机上看显得比较粗,于是我们用伪类结合css3缩放的方法去设置线条,但是如果设置div的一条边,水平线就设置宽度100%,垂直线就设置高度100%,那么如果是div的四条边呢?宽高1 ...

  4. 《Head First HTML与CSS》的CSS属性

    关于继承的结论. 1.元素选择器的作用强于继承的作用:用户定义强于浏览器默认(详见(3)<Head First HTML与CSS>学习笔记---CSS入门的2) 2.基于类的选择器> ...

  5. 安装scount的es驱动,composer require tamayo/laravel-scout-elastic报错解决

    执行 composer require tamayo/laravel-scout-elastic 报错信息如下: Problem 1 - Installation request for tamayo ...

  6. android开发中设置字体

    转自:http://segmentfault.com/q/1010000000494116 http://ryanhoo.github.io/blog/2014/05/05/android-bette ...

  7. Python 语言规范

    Python 语言规范 pychecker  对你的代码运行pychecker 定义: pychecker 是一个在Python 源代码中查找bug 的工具. 对于C 和C++这样的不那 么动态的( ...

  8. JDO

    JDO 编辑 本词条缺少名片图,补充相关内容使词条更完整,还能快速升级,赶紧来编辑吧! JDO(Java Data Object )是Java对象持久化的新的规范,也是一个用于存取某种数据仓库中的对象 ...

  9. 什么是Entitlement

    Entitlement(权限),可以想象成App里用于描述该App可以调用哪些服务的字符串.苹果的操作系统(mac os或者iOS)会通过检查这个串,决定这个应用是否可以调用相关功能.比如iCloud ...

  10. zabbix告警邮件、短信发送错误快速排查方法

    zabbix告警邮件.短信发送错误快速排查方法 背景 zabbix告警邮件.短信经常有同事反馈发送错误的情况,这个问题排查的角度很多,那么最快捷的角度是什么呢? 在我看来,最快的角度就是判断这个告警邮 ...