//求这样的sink点:它能达到的点,那个点必能达到他,即(G)={v∈V|任意w∈V:(v→w)推出(w→v)}
//我法:tarjan缩点后,遍历点,如果该点到达的点不在同一个强连通中,该点排除,而且该点所在的
//的强连通分支所有点都排除(开始因为这个跪WA!慎思!)
#include<iostream> //143MS,
#include<vector>
#include<cstdio>
#include<cstring>
#include<stack>
#include<queue>
using namespace std;
int n;int m;
const int MAX=5001;
vector<vector<int> >edges(MAX);
int visited[MAX];
int low[MAX];
int dfn[MAX];
int is_sink[MAX]; //统计出入度
int Strongly_connected_branch[MAX]; //并为一个强连通,标记为1.2.3...
int num;int times;
bool is_sink_all[MAX];
stack<int>s;
bool instack[MAX];
void tarjan(int u)
{
low[u]=dfn[u]=times++;
instack[u]=1;
s.push(u);
int len=edges[u].size();
for(int i=0;i<len;i++)
{
int v=edges[u][i];
if(visited[v]==0) //小心细节!
{
visited[v]=1;
tarjan(v);
if(low[u]>low[v])low[u]=low[v];
}
else if(instack[v]&&low[u]>dfn[v]) //有向图,要问是否在栈中,后向边,V为U某个祖先
{
low[u]=dfn[v];
}
}
if(dfn[u]==low[u]) //在一个SCC
{
num++;int temp;
do
{
temp=s.top();
instack[temp]=0;
s.pop();
Strongly_connected_branch[temp]=num;
} while(temp!=u);
}
}
void initialize()
{
num=times=0;
for(int i=0;i<=n;i++)
{
instack[i]=low[i]=dfn[i]=visited[i]=0;
edges[i].clear();
is_sink_all[i]=is_sink[i]=1;
Strongly_connected_branch[i]=-1;
}
}
bool readin()
{
scanf("%d",&n);
if(n==0)return 0;
scanf("%d",&m);
initialize();
int from,to;
for(int i=1;i<=m;i++)
{
scanf("%d%d",&from,&to);
edges[from].push_back(to);
}
return 1;
}
void solve()
{
for(int i=1;i<=n;i++)
if(visited[i]==0)
{
visited[i]=1;
tarjan(i);
}
for(int i=1;i<=n;i++) //自己思得:枚举所有边,缩点只是把所有SCC分开
{
int len=edges[i].size();
for(int j=0;j<len;j++)
{
int v=edges[i][j];
if(Strongly_connected_branch[v]!=Strongly_connected_branch[i])//b不再用一个强连通分支
{
is_sink[i]=0;
is_sink_all[Strongly_connected_branch[i]]=0; //其所在强连通全跪!
break;
}
}
}
queue<int>q; //要按顺序输出,无奈。
for(int i=1;i<=n;i++)
{
if(is_sink_all[Strongly_connected_branch[i]]==0){continue;}
if(is_sink[i]==1)q.push(i);
}
while(!q.empty())
{
int cur=q.front();
if(q.size()==1)printf("%d\n",cur);
else printf("%d ",cur);
q.pop();
}
}
int main() //代码越来越清楚O(∩_∩)O~
{
while(readin())
{
solve();
}
return 0;
}

poj2553 有向图缩点,强连通分量。的更多相关文章

  1. Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载)

    Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载) 转载自:http://hi.baidu.com/lydrainbowcat/blog/item/2 ...

  2. Tarjan应用:求割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)【转】【修改】

    一.基本概念: 1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成 ...

  3. (转)Tarjan应用:求割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)

    基本概念: 1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个 ...

  4. tarjan算法-解决有向图中求强连通分量的利器

    小引 看到这个名词-tarjan,大家首先想到的肯定是又是一个以外国人名字命名的算法.说实话真的是很佩服那些算法大牛们,佩服得简直是五体投地啊.今天就遇到一道与求解有向图中强连通分量的问题,我的思路就 ...

  5. POJ2553( 有向图缩点)

    The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 9779   Accepted:  ...

  6. 『Tarjan算法 有向图的强连通分量』

    有向图的强连通分量 定义:在有向图\(G\)中,如果两个顶点\(v_i,v_j\)间\((v_i>v_j)\)有一条从\(v_i\)到\(v_j\)的有向路径,同时还有一条从\(v_j\)到\( ...

  7. Tarjan算法初探 (1):Tarjan如何求有向图的强连通分量

    在此大概讲一下初学Tarjan算法的领悟( QwQ) Tarjan算法 是图论的非常经典的算法 可以用来寻找有向图中的强连通分量 与此同时也可以通过寻找图中的强连通分量来进行缩点 首先给出强连通分量的 ...

  8. 【Luogu P3387】缩点模板(强连通分量Tarjan&拓扑排序)

    Luogu P3387 强连通分量的定义如下: 有向图强连通分量:在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,则称两个顶 ...

  9. 图论-求有向图的强连通分量(Kosaraju算法)

    求有向图的强连通分量     Kosaraju算法可以求出有向图中的强连通分量个数,并且对分属于不同强连通分量的点进行标记. (1) 第一次对图G进行DFS遍历,并在遍历过程中,记录每一个点的退出顺序 ...

随机推荐

  1. IP查询系统的异步回调案例

    package com.lxj.demo; import java.io.BufferedReader; import java.io.IOException; import java.io.Inpu ...

  2. innerHTML引起IE的内存泄漏

      内存泄漏常见的原因有三种: 1. 闭包 2. 未解除事件绑定 3. 循环引用DOM元素 除此之外,还有一种泄漏原因少有人知,它和innerHTML有关,不过很容易解决. 出现这种内存泄漏需要有三个 ...

  3. ABAP和XML数据格式互相转换的两种方式

    ABAP和XML数据格式互相转换是广大开发人员经常遇到的需求.本文介绍两种方式. 1. ABAP提供了一个工具类cl_proxy_xml_transform,通过它的两个方法abap_to_xml_x ...

  4. 技术抄录_Java高级架构师教程

    1.B2C商城项目实战     2.高性能架构专题     3.架构筑基与开源框架解析专题     4.团队协作开发专题     5.微服务架构专题     6.设计模式     附上[架构资料]   ...

  5. python基础:函数传参、全局变量、局部变量、内置函数、匿名函数、递归、os模块、time模块

    ---恢复内容开始--- 一.函数相关: 1.1位置参数: ef hello(name,sex,county='china'): pass #hello('hh','nv') #位置参数.默认参数 1 ...

  6. HTML页面中5种超酷的伪类选择器:hover效果

    想在自己的网站中应用超酷的hover效果吗?也许你可以从如下的这些实例中获得一些灵感,如果你喜欢这些效果,也可以直接拷贝代码并应用到你的站点. 给平淡的站点带来活力 hover效果能给网页增加一些动态 ...

  7. Node.js快速生成26个字母

    const buf1 = Buffer.allocUnsafe(26); for (let i = 0; i < 26; i++) { // 97 是 'a' 的十进制 ASCII 值. buf ...

  8. 洛谷p1049 01背包

    dp水之旅背包 题目描述 有一个箱子容量为V(正整数,0<=V<=20000),同时有n个物品(0<n<=30,每个物品有一个体积(正整数). 要求n个物品中,任取若干个装入箱 ...

  9. Java多线程的同步方式和锁机制

    Object.wait(miliSec)/notify()/notifyAll() 线程调用wait()之后可以由notify()唤醒,如果指定了miliSec的话也可超时后自动唤醒.wait方法的调 ...

  10. 组管理命令--groupadd.groupmod.groupdel.gpasswd

    添加用户组 格式 groupadd [参数] 组名 参数选项 -g GID:指定新组的GID,默认值是已有的最大的GID加1.-r:建立一个系统专用组,与-g不同时使用时,则分配一个1-499的GID ...