传送门

如果新的图里存在边\((u,v)\),那么说明原图中\(u\)的终点和\(v\)的起点是同一个点

于是可以对新图中的每个点维护它的起点和终点,如果有一条边就把对应两个应该相等的点用并查集连起来

最后扫一遍,如果两个点没有边但他们的起点和终点在同一个集合那么说明gg了,否则就是可行的

//minamoto
#include<bits/stdc++.h>
#define R register
#define GG return (void)(puts("No"))
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
const int N=1005;
int fa[N],mp[305][305],n,m,u,v;
int find(R int x){return fa[x]==x?x:fa[x]=find(fa[x]);}
void solve(){
memset(mp,0,sizeof(mp)),n=read(),m=read();
fp(i,1,n<<1)fa[i]=i;fp(i,1,m)u=read()+1,v=read()+1,mp[u][v]=1,fa[find(u+n)]=find(v);
fp(i,1,n)fp(j,1,n)if(!mp[i][j]&&find(i+n)==find(j))GG;
puts("Yes");
}
int main(){
// freopen("testdata.in","r",stdin);
int T=read();
while(T--)solve();
return 0;
}

P4575 [CQOI2013]图的逆变换的更多相关文章

  1. BZOJ 3108: [cqoi2013]图的逆变换

    3108: [cqoi2013]图的逆变换 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 627  Solved: 415[Submit][Statu ...

  2. BZOJ3108 [cqoi2013]图的逆变换

    Description 定义一个图的变换:对于一个有向图\(G=(V, E)\),建立一个新的有向图: \(V'=\{v_e|e \in E\}\),\(E'=\{(v_b, v_e)|b=(u,v) ...

  3. [BZOJ 3108] 图的逆变换

    Link: BZOJ 3108 传送门 Solution: 样例教你做题系列 观察第三个输出为No的样例,发现只要存在$edge(i,k),edge(j,k)$,那么$i,j$的出边一定要全部相同 于 ...

  4. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  5. 论文解读GCN 1st《 Deep Embedding for CUnsupervisedlustering Analysis》

    论文信息 Tittle:<Spectral Networks and Locally Connected Networks on Graphs> Authors:Joan Bruna.Wo ...

  6. shader复杂与深入:Normal Map(法线贴图)1

    转自:http://www.zwqxin.com/archives/shaderglsl/review-normal-map-bump-map.htmlNormal Map法线贴图,想必每个学习计算机 ...

  7. [离散时间信号处理学习笔记] 8. z逆变换

    z逆变换的计算为下面的复数闭合曲线积分: $x[n] = \displaystyle{\frac{1}{2\pi j}}\oint_{C}X(z)z^{n-1}dz$ 式中$C$表示的是收敛域内的一条 ...

  8. NormalMap 贴图 【转】

    转载: http://www.zwqxin.com/archives/shaderglsl/review-normal-map-bump-map.html   说起Normal Map(法线贴图),就 ...

  9. 译:Local Spectral Graph Convolution for Point Set Feature Learning-用于点集特征学习的局部谱图卷积

    标题:Local Spectral Graph Convolution for Point Set Feature Learning 作者:Chu Wang, Babak Samari, Kaleem ...

随机推荐

  1. CF723E(欧拉回路)

    题意: 给出一个有向图,要求给每条边重定向,使得定向后出度等于入度的点最多,输出答案和任意一种方案. 分析: 将图看作无向图,对每条边重定向 首先我们肯定分成多个连通分量来考虑,每一个连通分量都是一个 ...

  2. 学习日常笔记<day17>jdbc基础

    1.jdbc入门 1.1.jdbc定义 使用java代码发送sql语句的技术就是jdbc技术 1.2.使用jdbc发送sql前提 需要登录数据库服务器(数据库的IP地址,端口,数据库用户名,密码) / ...

  3. maven之基础

    一.配置maven的环境 下载地址:http://maven.apache.org/download.cgi(window下载(Binary zip)的) 将maven解压,然后配置环境变量打开: 计 ...

  4. 用WCF服务来动态的获取本地XML省市区文档

    建立一个WCF服务. using ClassLibrary; using System; using System.Collections.Generic; using System.Linq; us ...

  5. Java日志框架使用技巧收集(slf4j、jcl、jul、log4j1、log4j2、logback)

    乒乓狂魔-教程: jdk-logging.log4j.logback日志介绍及原理 commons-logging与jdk-logging.log4j1.log4j2.logback的集成原理 slf ...

  6. 使用Guava适配不同的callback

    Cache<Key,Value> cache =CacheBuilder.newBuilder() .maximumSize(1000) .build();// look Ma, no C ...

  7. 2016.3.15__H5页面实战__第七天

    假设您认为这篇文章还不错,能够去H5专题介绍中查看很多其它相关文章. 个人简书地址: dhttp://www.jianshu.com/users/5a2fd0b8fb30/latest_article ...

  8. 【网络】TCP的拥塞控制

    一.拥塞控制的一般原理 拥塞:对网络中某一资源的需求超过了该资源所能提供的可用部分 拥塞控制是防止过多的数据注入到网络,这样可以使网络中的路由器或链路不致过载,拥塞控制是一个全局性的过程. 流量控制往 ...

  9. Ubuntu使用adb连接android手机失败unknown的解决的方法

    Ubuntu使用adb连接android手机失败unknown的解决的方法   Ubuntu下通过USB数据线连接G11手机后,adb可能无法识别到设备.依照一下步骤能够解决此问题. 1.在termi ...

  10. udhcp详解源码(序)

    最近负责接入模块,包括dhcp.ipoe和pppoe等等.所以需要对dhcp和ppp这几个app的源代码进行一些分析.网上有比较好的文章,参考并补充自己的分析. 这篇udhcp详解是基于busybox ...