BZOJ_2844_albus就是要第一个出场_线性基
BZOJ_2844_albus就是要第一个出场_线性基
Description
Input
第一行一个数n, 为序列A的长度。接下来一行n个数, 为序列A, 用空格隔开。最后一个数Q, 为给定的数.
Output
Sample Input
1 2 3
1
Sample Output
样例解释:
N = 3, A = [1 2 3]
S = {1, 2, 3}
2^S = {空, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
f(空) = 0
f({1}) = 1
f({2}) = 2
f({3}) = 3
f({1, 2}) = 1 xor 2 = 3
f({1, 3}) = 1 xor 3 = 2
f({2, 3}) = 2 xor 3 = 1
f({1, 2, 3}) = 0
所以
B = [0, 0, 1, 1, 2, 2, 3, 3]
HINT
数据范围:
1 <= N <= 10,0000
其他所有输入均不超过10^9
基本思路是求出有几个小于这个数且本质不同的数。
如果构成线性基的数有K个,那么每种方案都可以找出$2^{n-K}$个。
然后我们可以正着求第K大异或和,也可以很巧妙的解决这个数是第几大的异或和。
由于这$2^{K}$个异或和与他们的排名是一一对应的,我们可以这样做。
把线性基中所有第一位的1抠出来,假设现在有个数x,将x拆成二进制的形式,在线性基中的第i位是1就相当于有1<<i个比他小的,需要加上。
其实就是反过来做,求反过来的第K大异或和,只不过此时的线性基是第i个向量恰好在第i位为1。
代码:
- #include <cstdio>
- #include <cstring>
- #include <algorithm>
- using namespace std;
- const int mod=10086;
- int qp(int x,int y) {
- int re=1; for(;y;y>>=1,x=x*x%mod) if(y&1) re=re*x%mod; return re;
- }
- int n,b[40],a[40];
- void insert(int x) {
- int i;
- for(i=30;i>=0;i--) {
- if(x&(1<<i)) {
- if(b[i]) x^=b[i];
- else {
- b[i]=x; return ;
- }
- }
- }
- }
- void Guass() {
- int i,j;
- for(i=30;i>=0;i--) {
- if(b[i]) {
- for(j=30;j>=0;j--) {
- if(i!=j&&(b[j]&(1<<j))) b[j]^=b[i];
- }
- }
- }
- }
- int main() {
- scanf("%d",&n);
- int i,x;
- for(i=1;i<=n;i++) scanf("%d",&x),insert(x);
- Guass();
- int Q;
- scanf("%d",&Q);
- int k=0;
- for(i=0;i<=30;i++) if(b[i]) a[++k]=i;
- int re=0;
- for(i=1;i<=k;i++) {
- if(Q&(1<<(a[i]))) {
- re=(re+(1<<(i-1)))%mod;
- }
- }
- printf("%d\n",(re*qp(2,n-k)%mod+1)%mod);
- }
BZOJ_2844_albus就是要第一个出场_线性基的更多相关文章
- BZOJ_2844 albus就是要第一个出场 【线性基】
一.题目 albus就是要第一个出场 二.分析 非常有助于理解线性基的一题. 构造线性基$B$后,如果$|A| > |B|$,那么就意味着有些数可以由$B$中的数异或出来,而多的数可以取或者不取 ...
- 洛谷P4869 albus就是要第一个出场(线性基)
传送门 不知道线性基是什么东西的可以看看蒟蒻的总结 线性基居然有这性质我还不知道orz 假设$n$个数的线性基中有$k$个数,那么显然共有$2^k$个不同的异或和,而其中每一个异或和的出现次数都是$2 ...
- BZOJ_2460_[BeiJing2011]元素_线性基
BZOJ_2460_[BeiJing2011]元素_线性基 Description 相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔 法矿石炼制法杖的技术.那时人们就认识 ...
- BZOJ_4004_[JLOI2015]装备购买_线性基
BZOJ_4004_[JLOI2015]装备购买_线性基 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) ...
- BZOJ_3105_[cqoi2013]新Nim游戏_线性基+博弈论
BZOJ_3105_[cqoi2013]新Nim游戏_线性基+博弈论 Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作 ...
- LOJ114_k 大异或和_线性基
LOJ114_k 大异或和_线性基 先一个一个插入到线性基中,然后高斯消元. 求第K小就是对K的每一位是1的都用对应的线性基的一行异或起来即可. 但是线性基不包含0的情况,因此不能确定能否组成0,需要 ...
- HDU6579 2019HDU多校训练赛第一场1002 (线性基)
HDU6579 2019HDU多校训练赛第一场1002 (线性基) 传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6579 题意: 两种操作 1.在序列末 ...
- [Cometoj#3 D]可爱的菜菜子_线段树_差分_线性基
可爱的菜菜子 题目链接:https://cometoj.com/contest/38/problem/D?problem_id=1543 数据范围:略. 题解: 首先,如果第一个操作是单点修改,我们就 ...
- 2019牛客暑期多校训练营(第一场)H 线性基+计算贡献
题意 给n个整数,求满足子集异或和为0的子集大小之和. 分析 将问题转化为求每个元素的贡献次数之和. 先对n个数求线性基,设线性基大小为r,即插入线性基的数字个数为r,可以分别计算线性基内数的贡献和线 ...
随机推荐
- 洛谷P1521 求逆序对 题解
题意: 求1到n的全排列中有m对逆序对的方案数. 思路: 1.f[i][j]表示1到i的全排列中有j对逆序对的方案数. 2.显然,1到i的全排列最多有(i-1)*i/2对逆序对,而对于f[i][j]来 ...
- hdu 1501 基本搜索深搜
#include<stdio.h> #include<string.h> char s1[300],s2[300],s[500]; int len1,len2,len3,fla ...
- react.js 父子组件数据绑定实时通讯
import React,{Component} from 'react' import ReactDOM from 'react-dom' class ChildCounter extends Co ...
- 【HDOJ6312】Game(博弈)
题意: 有一个1到n的序列,两个人轮流取数,取走一个数同时会取走它所有的因子,不能取者为输,两个人都按最优策略取数,问先手是否必胜 思路: #include<cstdio> #includ ...
- 【HDOJ6300】Triangle Partition(极角排序)
题意:给定3n个点,保证没有三点共线,要求找到一组点的分组方案使得它们组成的三角形之间互不相交. n<=1e3 思路:以y为第一关键字,x为第二关键字,按x递减,y递增排序 #include&l ...
- for-else和wihle-else组合用法
当for和else组合一起使用的时候,for循环正常执行完毕,会执行else语句,否则,不会执行else语句 for i in range(10): if i == 2: break else: pr ...
- 352. Data Stream as Disjoint Interval
Given a data stream input of non-negative integers a1, a2, ..., an, ..., summarize the numbers seen ...
- Two Sum(hashtable)
Given an array of integers, find two numbers such that they add up to a specific target number. The ...
- Vue基础学习
使用vue-cli构建初始化vue项目 vue init webpack myfirst 项目截图:(开发工具:webStorm) 主要练习了vue的基本指令:v-bind.v-if.v-show.v ...
- easyUI排序问题
使用easyUI时,需要在点击页面的某一列进行desc或asc排序,那么在jsp中可以把该列js的sortable 设置true. 加在某字段上时,该字段点击时页面会出现一小三角图案 ,此时easyU ...