RMQ(Range Minimum Query)问题(转)
问题描述
首 先是预处理,用动态规划(DP)解决。设A[i]是要求区间最值的数列,F[i, j]表示从第i个数起连续2^j个数中的最大值。例如数列3 2 4 5 6 8 1 2 9 7,F[1,0]表示第1个数起,长度为2^0=1的最大值,其实就是3这个数。 F[1,2]=5,F[1,3]=8,F[2,0]=2,F[2,1]=4……从这里可以看出F[i,0]其实就等于A[i]。这样,DP的状态、初值都 已经有了,剩下的就是状态转移方程。我们把F[i,j]平均分成两段(因为f[i,j]一定是偶数个数字),从i到i+2^(j-1)-1为一 段,i+2^(j-1)到i+2^j-1为一段(长度都为2^(j-1))。用上例说明,当i=1,j=3时就是3,2,4,5 和 6,8,1,2这两段。F[i,j]就是这两段的最大值中的最大值。于是我们得到了动态规划方程F[i, j]=max(F[i,j-1], F[i + 2^(j-1),j-1])。
然 后是查询。取k=[log2(j-i+1)],则有:RMQ(A, i, j)=max{F[i,k],F[j-2^k+1,k]}。 举例说明,要求区间[2,8]的最大值,总共2到8是7个元素,所以k=2,那么就要把它分成[2,5]和[5,8]两个区间,因为这两个区间的最大值我 们可以直接由f[2,2]和f[5,2]得到。
具体如下图所示:
//初始化
INIT_RMQ
//max[i][j]中存的是重i开始的2^j个数据中的最大值,最小值类似,num中存有数组的值
for
i : 1 to n
max[i][0] = num[i]
for
j : 1 to
log
(n)
for
i : 1 to (n-2^j+1)
max[i][j] = MAX(max[i][j-1], max[i+2^(j-1)][j-1])
//查询
RMQ(i, j)
k =
log
(j-i+1)
return
MAX(max[i][k], max[
j-2^k+1][k])RMQ(Range Minimum Query)问题(转)的更多相关文章
- AOJ DSL_2_A Range Minimum Query (RMQ)
Range Minimum Query (RMQ) Write a program which manipulates a sequence A = {a0,a1,...,an−1} with the ...
- Range Minimum Query and Lowest Common Ancestor
作者:danielp 出处:http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=lowestCommonAnc ...
- RMQ (Range Minimal Query) 问题 ,稀疏表 ST
RMQ ( 范围最小值查询 ) 问题是一种动态查询问题,它不需要修改元素,但要及时回答出数组 A 在区间 [l, r] 中最小的元素值. RMQ(Range Minimum/Maximum Query ...
- Geeks - Range Minimum Query RMQ范围最小值查询
使用线段树预处理.能够使得查询RMQ时间效率在O(lgn). 线段树是记录某范围内的最小值. 标准的线段树应用. Geeks上仅仅有两道线段树的题目了.并且没有讲到pushUp和pushDown操作. ...
- RMQ((Range Minimum/Maximum Query))ST算法
给定一个数组,求出给定区间[l,r]中元素的最大值或最小值或者最值的索引. 一看到这个题目,简单,看我暴力出奇迹.暴力当然是可行的.但是时间复杂度很高(O(n^2)).线段树,树状数组也可以解决这个问 ...
- Segment Tree Range Minimum Query.
int rangeMinQuery(int segTree[], int qlow, int qhigh, int low, int high, int pos) { if (qlow <= l ...
- [LeetCode] Range Sum Query 2D - Mutable 二维区域和检索 - 可变
Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...
- [LeetCode] Range Sum Query - Mutable 区域和检索 - 可变
Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive ...
- [LeetCode] Range Sum Query 2D - Immutable 二维区域和检索 - 不可变
Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...
随机推荐
- 让Selenium稳定运行的技巧
Selenium简介 Selenium是非常流行的Web自动化测试工具.它具有自动化测试用例制作简单,支持多种浏览器和不同的操作系统等优点. Selenium脚本不稳定的问题 有很多时候Seleniu ...
- XV6操作系统接口
操作系统接口 操作系统的工作是(1)将计算机的资源在多个程序间共享,并且给程序提供一系列比硬件本身更有用的服务.(2)管理并抽象底层硬件,举例来说,一个文字处理软件(比如 word)不用去关心自己使用 ...
- css装饰文本框input
在web程序前端页面中,<input>恐怕是用的最多的html元素了,各个需要录入信息的场合都会用到它,一般都会用css来修饰一下使得它更好看. 原始的不加修饰的文本框像下面,有些单调,页 ...
- 洛谷P1276 校门外的树(增强版)未完工
题目描述 校门外马路上本来从编号0到L,每一编号的位置都有1棵树.有砍树者每次从编号A到B处连续砍掉每1棵树,就连树苗也不放过(记 0 A B ,含A和B):幸运的是还有植树者每次从编号C到D 中凡是 ...
- hdu3516 Tree Construction (四边形不等式)
题意:给定一些点(xi,yi)(xj,yj)满足:i<j,xi<xj,yi>yj.用下面的连起来,使得所有边的长度最小? 题解:直接给出吧 f[i][j]=min(f[i][k]+f ...
- 高精度模板(From JCVB)
#include<cstdio> #include<algorithm> #include<cstring> #include<iostream> #i ...
- linux service命令解析(重要)
我们平时都会用service xxx start来启动某个进程,那么它背后究竟执行了什么? 其实service的绝对路径为/sbin/service ,打开这个文件cat /sbin/service, ...
- PHP获得真实客户端的真实IP REMOTE_ADDR,HTTP_CLIENT_IP,HTTP_X_FORWARDED_FOR[]转载
REMOTE_ADDR 是你的客户端跟你的服务器“握手”时候的IP.如果使用了“匿名代理”,REMOTE_ADDR将显示代理服务器的IP. HTTP_CLIENT_IP 是代理服务器发送的HTTP头. ...
- 前端学习之-- Jquery
Jquery学习笔记 中文参考文档:http://jquery.cuishifeng.cn Jquery是一个包含DOM/BOM/JavaScript的类库引入jquery文件方法:<scrip ...
- vs npm设置淘宝npm
VS2017自带的npm会去国外的镜像下载文件, 奇慢无比, 还是马云家淘宝的镜像适合国内用户. 淘宝npm镜像地址: https://registry.npm.taobao.org VS中使用淘宝 ...