Description

A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一。每座城市都有一个幸运数字,以纪念碑的形式矗立在这座城市的正中心,作为城市的象征。一些旅行者希望游览 A 国。旅行者计划乘飞机降落在 x 号城市,沿着 x 号城市到 y 号城市之间那条唯一的路径游览,最终从 y 城市起飞离开 A 国。在经过每一座城市时,游览者就会有机会与这座城市的幸运数字拍照,从而将这份幸运保存到自己身上。然而,幸运是不能简单叠加的,这一点游览者也十分清楚。他们迷信着幸运数字是以异或的方式保留在自己身上的。例如,游览者拍了 3 张照片,幸运值分别是 5,7,11,那么最终保留在自己身上的幸运值就是 9(5 xor 7 xor 11)。有些聪明的游览者发现,只要选择性地进行拍照,便能获得更大的幸运值。例如在上述三个幸运值中,只选择 5 和 11 ,可以保留的幸运值为 14 。现在,一些游览者找到了聪明的你,希望你帮他们计算出在他们的行程安排中可以保留的最大幸运值是多少。

Input

第一行包含 2 个正整数 n ,q,分别表示城市的数量和旅行者数量。第二行包含 n 个非负整数,其中第 i 个整数 Gi 表示 i 号城市的幸运值。随后 n-1 行,每行包含两个正整数 x ,y,表示 x 号城市和 y 号城市之间有一条道路相连。随后 q 行,每行包含两个正整数 x ,y,表示这名旅行者的旅行计划是从 x 号城市到 y 号城市。N<=20000,Q<=200000,Gi<=2^60

Output

输出需要包含 q 行,每行包含 1 个非负整数,表示这名旅行者可以保留的最大幸运值。
 

题解:

这首先一看,线性基啊!不过这是树上的,我们可以用树上的数据结构维护线性基。

于是就想到了倍增。

v[i][j] 表示从 i (包括)到其第 2j 个祖先(不包括)的线性基,每次查询往上跳,每次将线性基合并。

线性基的合并直接暴力,因为线性基只有60的长度,暴力合并不会耗太多时间。

剩下的就是裸的线性基了!!

CODE:

  1. #include<iostream>
  2. #include<cmath>
  3. #include<algorithm>
  4. #include<cstdio>
  5. using namespace std;
  6.  
  7. int n,m,u[],v[],deg[];
  8. double a[][],g[],res;
  9.  
  10. void gauss(){
  11. for(int i=,maxn=i;i<n;maxn=++i){
  12. for(int j=i+;j<=n;j++)
  13. if(fabs(a[j][i])>fabs(a[maxn][i]))maxn=j;
  14. for(int j=;j<=n+;j++)swap(a[i][j],a[maxn][j]);
  15. for(int j=i+;j<=n;j++){
  16. if(fabs(a[j][i])<1e-)continue;
  17. double s=a[j][i]/a[i][i];
  18. for(int k=;k<=n+;k++)a[j][k]-=a[i][k]*s;
  19. }
  20. }
  21. for(int i=n;i>=;i--){
  22. for(int j=i+;j<=n;j++)
  23. a[i][n+]-=a[i][j]*a[j][n+];
  24. a[i][n+]/=a[i][i];
  25. }
  26. }
  27.  
  28. int main(){
  29. scanf("%d%d",&n,&m);
  30. for(int i=;i<=m;i++){
  31. scanf("%d%d",u+i,v+i);
  32. deg[u[i]]++,deg[v[i]]++;
  33. }
  34. a[][n+]=-,a[n][n]=;
  35. for(int i=;i<=m;i++){
  36. if(u[i]^n)a[u[i]][v[i]]=1.0/deg[v[i]];
  37. if(v[i]^n)a[v[i]][u[i]]=1.0/deg[u[i]];
  38. }
  39. for(int i=;i<n;i++)a[i][i]=-;
  40. gauss();
  41. for(int i=;i<=m;i++)
  42. g[i]=a[u[i]][n+]/deg[u[i]]+a[v[i]][n+]/deg[v[i]];
  43. sort(g+,g+m+);
  44. for(int i=;i<=m;i++)res+=g[i]*(m-i+);
  45. printf("%.3f\n",res);
  46. }

【bzoj4568】【Scoi2016】幸运数字 (线性基+树上倍增)的更多相关文章

  1. BZOJ4568: [Scoi2016]幸运数字(线性基 倍增)

    题意 题目链接 Sol 线性基是可以合并的 倍增维护一下 然后就做完了?? 喵喵喵? // luogu-judger-enable-o2 #include<bits/stdc++.h> # ...

  2. 洛谷P3292 [SCOI2016] 幸运数字 [线性基,倍增]

    题目传送门 幸运数字 题目描述 A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个幸运数字,以纪念碑的形式矗立在这座城市的正中心,作为城市的 ...

  3. bzoj4568 [Scoi2016]幸运数字 线性基+树链剖分

    A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个 幸运数字,以纪念碑的形式矗立在这座城市的正中心,作为城市的象征.一些旅行者希望游览 A ...

  4. BZOJ 4568: [Scoi2016]幸运数字 [线性基 倍增]

    4568: [Scoi2016]幸运数字 题意:一颗带点权的树,求树上两点间异或值最大子集的异或值 显然要用线性基 可以用倍增的思想,维护每个点向上\(2^j\)个祖先这些点的线性基,求lca的时候合 ...

  5. 洛谷P3292 [SCOI2016]幸运数字 线性基+倍增

    P3292 [SCOI2016]幸运数字 传送门 题目描述 A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个幸运数字,以纪念碑的形式矗立在 ...

  6. BZOJ 4568 [Scoi2016]幸运数字 ——线性基 倍增

    [题目分析] 考虑异或的最大值,维护线性基就可以了. 但是有多次的询问,树剖或者倍增都可以. 想了想树剖动辄数百行的代码. 算了,我还是写倍增吧. 注:被位运算和大于号的优先级坑了一次,QaQ [代码 ...

  7. P3292 [SCOI2016]幸运数字 [线性基+倍增]

    线性基+倍增 // by Isaunoya #include <bits/stdc++.h> using namespace std; #define rep(i, x, y) for ( ...

  8. P3292 [SCOI2016]幸运数字 线性基

    正解:线性基+倍增 解题报告: 先放下传送门QAQ 然后这题,其实没什么太大的技术含量,,,?就几个知识点套在一起,除了代码长以外没任何意义,主要因为想复习下线性基的题目所以还是写下,,, 随便写下思 ...

  9. [SCOI2016]幸运数字 线性基

    题面 题面 题解 题面意思非常明确:求树上一条链的最大异或和. 我们用倍增的思想. 将这条链分成2部分:x ---> lca , lca ---> y 分别求出这2个部分的线性基,然后合并 ...

  10. BZOJ.4516.[SCOI2016]幸运数字(线性基 点分治)

    题目链接 线性基可以\(O(log^2)\)暴力合并.又是树上路径问题,考虑点分治. 对于每个点i求解 LCA(u,v)==i 时的询问(u,v),只需求出这个点到其它点的线性基后,暴力合并. LCA ...

随机推荐

  1. (三)mybatis之对Hibernate初了解

    前言:为什么会写Hibernate呢?因为HIbernate跟Mybatis一样,是以ORM模型为核心思想的,但是这两者有相似的地方也有差异的地方.通过这两种框架的比对,可以对mybatis有着更深的 ...

  2. Robot Framework(十一) 执行测试用例——后处理输出

    3.3后处理输出 在测试执行期间生成的XML输出文件可以在之后由rebot工具进行后处理,该工具是Robot Framework的组成部分.在测试执行期间生成测试报告和日志时会自动使用它,但在执行后也 ...

  3. 快学UiAutomator配置编辑环境

    Java环境配置 1.下载jdk1.6+包 2.安装jdk,默认安装即可 3.成功安装之后,进行测试是否真的成功安装,点击[开始]----[运行]----输入 CMD,在命令提示符里面输入“Java ...

  4. SpringMVC+Spring+Mybatis整合程序之整合

    因为每个人思路不一样,所以我在这边先分享自己的思路对于mybatis开发持久层(DAO:DataBase Access Object 持久层访问对象)有两种.第一种:传统的开发持久层方式即需要程序员开 ...

  5. Spring框架中的aop操作之二 通过配置文件实现增强

    aop表达式写法 配置文件代码: <?xml version="1.0" encoding="UTF-8"?> <beans xmlns=&q ...

  6. c++ 递归求一个数的阶乘

    #include <iostream> using namespace std; long factorial(int value); int main() { int value; co ...

  7. [LUOGU] P2330 [SCOI2005]繁忙的都市

    题目描述 城市C是一个非常繁忙的大都市,城市中的道路十分的拥挤,于是市长决定对其中的道路进行改造.城市C的道路是这样分布的:城市中有n个交叉路口,有些交叉路口之间有道路相连,两个交叉路口之间最多有一条 ...

  8. 004 html常用标签

    html常用标签 1.无语义标签 <div></div> <span></span> 2.常用语义标签 <hn></hn> 标题 ...

  9. perl学习笔记之:正则表达式

     Perl 中的正则表达式 正则表达式的三种形式  正则表达式中的常用模式  正则表达式的 8 大原则          正则表达式是 Perl 语言的一大特色,也是 Perl 程序中的一点难点,不过 ...

  10. day20-python之装饰器

    1.装饰器 #!/usr/bin/env python # -*- coding:utf-8 -*- import time def cal(l): start_time=time.time() re ...