网上对K-D-Tree的讲解不尽清晰,我学了很久都不会写,这里新开一文做一些讲解。

1.K-D-Tree是什么?

K-DTree 即 K-Dimensional-Tree,常用来作空间划分及近邻搜索,是二叉空间划分树的一个特例。通常,对于$k(k>1)$维平面上的$n$个点,我们要把它们存进KDTree。

2.KDTree怎么建?

(1)按照维度划分

一个平衡的 KDTree,其所有叶子节点到根节点的距离近似相等。但一个平衡的 KDTree 对最近邻搜索、空间搜索等应用场景并非是最优的。

常规的 KDTree 的构建过程为:循环依序取数据点的各维度来作为切分维度,取数据点在该维度的中值作为切分超平面,将中值左侧的数据点挂在其左子树,将中值右侧的数据点挂在其右子树。递归处理其子树,直至所有数据点挂载完毕。

(2)按照当前维度的中位数划分

【2018.9.26】K-D Tree详解的更多相关文章

  1. Python聚类算法之基本K均值实例详解

    Python聚类算法之基本K均值实例详解 本文实例讲述了Python聚类算法之基本K均值运算技巧.分享给大家供大家参考,具体如下: 基本K均值 :选择 K 个初始质心,其中 K 是用户指定的参数,即所 ...

  2. 26.SpringBoot事务注解详解

    转自:https://www.cnblogs.com/kesimin/p/9546225.html @Transactional spring 事务注解 1.简单开启事务管理 @EnableTrans ...

  3. BTree和B+Tree详解

    https://www.cnblogs.com/vianzhang/p/7922426.html B+树索引是B+树在数据库中的一种实现,是最常见也是数据库中使用最为频繁的一种索引.B+树中的B代表平 ...

  4. 【算法】关于图论中的最小生成树(Minimum Spanning Tree)详解

    本节纲要 什么是图(network) 什么是最小生成树 (minimum spanning tree) 最小生成树的算法 什么是图(network)? 这里的图当然不是我们日常说的图片或者地图.通常情 ...

  5. ODT(old driver tree)详解(带例题)

    文章目录 ODT简介 实现前提&&实现原理 初始化 split操作 assign操作 其它操作 区间第k小 区间加 区间所有数的k次方和 几道水题 ODT简介 ODT(old driv ...

  6. 【bzoj3065】: 带插入区间K小值 详解——替罪羊套函数式线段树

    不得不说,做过最爽的树套树———— 由于有了区间操作,我们很容易把区间看成一棵平衡树,对他进行插入,那么外面一层就是平衡树了,这就与我们之前所见到的不同了.我们之前所见到的大多数是线段树套平衡树而此题 ...

  7. PHP使用HighChart生成股票K线图详解

    本人qq群也有许多的技术文档,希望可以为你提供一些帮助(非技术的勿加). QQ群:   281442983 (点击链接加入群:http://jq.qq.com/?_wv=1027&k=29Lo ...

  8. dsu on tree详解

    这个算法还是挺人性化的,没有什么难度 就是可能看起来有点晕什么的. 大体 思想是 利用重链刨分来优化子树内部的查询. 考虑一个问题要对每个子树都要询问一次.我们暴力显然是\(n^2\)的. 考虑一下优 ...

  9. 二叉查找树(binary search tree)详解

    二叉查找树(Binary Search Tree),也称二叉排序树(binary sorted tree),是指一棵空树或者具有下列性质的二叉树: 若任意节点的左子树不空,则左子树上所有结点的值均小于 ...

随机推荐

  1. MDI和在TabPage

    无奈的.net探索 MDI和在TabPage中增加Form分页? MDI(Multiple Document Interface)是一种在窗口中嵌套窗口的接口, 与之对应的是SDI(Single Do ...

  2. Luogu P5351 Ruri Loves Maschera

    先ORZ\(Owen\)一发.感觉是个很套路的题,这里给一个蒟蒻的需要特判数据的伪\(n\log^2 n\)算法,真正的两只\(\log\)的还是去看标算吧(但这个好想好写跑不满啊) 首先这种树上路径 ...

  3. poj1142Smith Numbers质因子分解

    题意:一个数不是质数,其质因子的每位加起来等于该数的每位加起来. /* 题意:一个数的所有质因子的每位相加起来等于该数的每位相加起来且该数不能是质数,那么就是史密斯数 tip:对于分解质因子,只需要判 ...

  4. linux下使用OpenCV的一些问题

    完整正确的代码如下: import cv2 import numpy as np image = cv2.imread('Pictures/a.png') cv2.imshow('original_i ...

  5. Base64编码密钥时关于换行的几个问题。

    在windows下一个javaweb应用,需要用http传递公钥pk.一般是String pk = BASE64ENCODER.encode(pkBytes);base64编码时,每76个字母就要换行 ...

  6. 浮动清楚浮动及position的用法

    float 在 CSS 中,任何元素都可以浮动. 浮动元素会生成一个块级框,而不论它本身是何种元素. 关于浮动的两个特点: 浮动的框可以向左或向右移动,直到它的外边缘碰到包含框或另一个浮动框的边框为止 ...

  7. maven项目创建(eclipse配置

    Eclipse相关配置: eclipse 设置默认编码为Utf-8 需要设置的几处地方为: Window --> Preferences --> General --> Conten ...

  8. Cscope的使用(领略Vim + Cscope的强大魅力)

    文章出处:http://blog.csdn.net/dengxiayehu/article/details/6330200 Cscope的使用(领略Vim + Cscope的强大魅力) 1.Cscop ...

  9. 八 个优秀的 jQuery Mobile 教程

    jQuery Mobile 是 jQuery 在手机上和平板设备上的版本.jQuery Mobile不仅会给主流移动平台带来jQuery核心库,而且会发布一个完整统一的jQuery移动UI框架.虽然j ...

  10. 前端vue 里的tab切换 减少dom操作

    <div class="vuedemo"> <div class="all"> <div class="tabone&q ...