题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1124

Problem Description

The most important part of a GSM network is so called Base Transceiver Station (BTS). These transceivers form the areas called cells (this term gave the name to the cellular phone) and every phone connects to the BTS with the strongest signal (in a little simplified view). Of course, BTSes need some attention and technicians need to check their function periodically. 
ACM technicians faced a very interesting problem recently. Given a set of BTSes to visit, they needed to find the shortest path to visit all of the given points and return back to the central company building. Programmers have spent several months studying this problem but with no results. They were unable to find the solution fast enough. After a long time, one of the programmers found this problem in a conference article. Unfortunately, he found that the problem is so called "Travelling Salesman Problem" and it is very hard to solve. If we have N BTSes to be visited, we can visit them in any order, giving us N! possibilities to examine. The function expressing that number is called factorial and can be computed as a product 1.2.3.4....N. The number is very high even for a relatively small N. 
The programmers understood they had no chance to solve the problem. But because they have already received the research grant from the government, they needed to continue with their studies and produce at least some results. So they started to study behaviour of the factorial function. 
For example, they defined the function Z. For any positive integer N, Z(N) is the number of zeros at the end of the decimal form of number N!. They noticed that this function never decreases. If we have two numbers N1<N2, then Z(N1) <= Z(N2). It is because we can never "lose" any trailing zero by multiplying by any positive number. We can only get new and new zeros. The function Z is very interesting, so we need a computer program that can determine its value efficiently.

Input

There is a single positive integer T on the first line of input. It stands for the number of numbers to follow. Then there is T lines, each containing exactly one positive integer number N, 1 <= N <= 1000000000. 

Output

For every number N, output a single line containing the single non-negative integer Z(N).

Sample Input

6
3
60
100
1024
23456
8735373

Sample Output

0
14
24
253
5861
2183837
解题思路:题目说这么多,其实就是求N!尾数为0的个数,套一下上一篇的法二公式即可,水过!
AC代码(280ms):
 #include<iostream>
using namespace std;
int main(){
int n,t,cnt;
while(cin>>t){
while(t--){
cin>>n;cnt=;
while(n>)cnt+=n/,n/=;
cout<<cnt<<endl;
}
}
return ;
}

题解报告:hdu 1124 Factorial(求N!尾数有多少个0。)的更多相关文章

  1. HDU 1124 Factorial (数论)

    http://acm.hdu.edu.cn/showproblem.php? pid=1124 題目好長好長,好可怕,看完腎都萎了,以後肯定活不長.我可不能死在這種小事上,小灰灰我勵志死在少女的超短裙 ...

  2. hdu 1124 Factorial(数论)

    题意: 求n!的尾0的个数 分析: 0一定是由因子2和5相乘产生的: 2的个数显然大于5的个数,故只需统计因子5的个数 n/5不能完全表示n!中5的个数(egg: 25),应该n/=5后,累加上n/2 ...

  3. HDU 1124 Factorial (阶乘后缀0)

    题意: 给一个数n,返回其阶乘结果后缀有几个0. 思路: 首先将n个十进制数进行质因数分解,观察的得到只有2*5才会出现10.那么n!应含有min(2个数,5个数)个后缀0,明显5的个数必定比2少,所 ...

  4. 求N!尾数有多少个0。

    方法一:假设N!=K*10M,K不能被10整除,那么N!尾数就有M个0.再对N!进行质因子分解:N!=2x*3y*5z...由于10=2*5,即每一对2和5相乘都可以得到1个0,所以M只与指数x.z有 ...

  5. 题解报告:hdu 1398 Square Coins(母函数或dp)

    Problem Description People in Silverland use square coins. Not only they have square shapes but also ...

  6. 题解报告:hdu 2069 Coin Change(暴力orDP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2069 Problem Description Suppose there are 5 types of ...

  7. 题解报告:hdu 1028 Ignatius and the Princess III(母函数or计数DP)

    Problem Description "Well, it seems the first problem is too easy. I will let you know how fool ...

  8. 2015浙江财经大学ACM有奖周赛(一) 题解报告

    2015浙江财经大学ACM有奖周赛(一) 题解报告 命题:丽丽&&黑鸡 这是命题者原话. 题目涉及的知识面比较广泛,有深度优先搜索.广度优先搜索.数学题.几何题.贪心算法.枚举.二进制 ...

  9. cojs 强连通图计数1-2 题解报告

    OwO 题目含义都是一样的,只是数据范围扩大了 对于n<=7的问题,我们直接暴力搜索就可以了 对于n<=1000的问题,我们不难联想到<主旋律>这一道题 没错,只需要把方程改一 ...

随机推荐

  1. 弄技术要弄通-公司reis的pub/sub怎么使用的呢?

    Pub/Sub in Redis using PHP Posted on November 14, 2011by xmeng I would like to put an example togeth ...

  2. iOS国际化:NSLocalizedString的使用

    因为iOS和XCode版本号更新得太快的原因,导致网上非常多文章都失去了时效性,或许再过两三个月我这篇文章也将走上这条路,但起码能够让现阶段看到的人对iOS的国际化有个比較清楚的认识. NSLocal ...

  3. 【C/C++学院】0901-设计模式的汇总演练

    备忘录模式 数据库的备份,文档编辑中的撤销等功能 #include <iostream> #include <string> #include <vector> u ...

  4. iOS + Nodejs SSL/Https双向认证

    移动互联网的大力发展,安全越来越重要. 什么是双向认证呢?双向认证就是client要验证server的合法性,同一时候server也要验证client的合法性. 这样两方都相互验证,提高安全性. 关于 ...

  5. 更改Mysql登录密码

    版本号49之前的跨域设置 在Windows命令行下修改mysql数据库密码步骤如下: 1.通过dos命令进入mysql的bin目录: 2.输入“mysql -uroot -p”,回车进入mysql命令 ...

  6. 在做java 的web开发,为什么要使用框架

    现在做项目都会使用框架,现在很常见的框架就是SSH(Struts+SpringMVC+spring+hibernate),SSM(Struts/springMVC+Spring+Hibernate), ...

  7. 在myeclipse中拷贝一个工程,修改部署的名字

        在MyEclipse中,经常练习的时候需要建立多个工程,但是为了方便,通常的作法是:复制一个工程,然后直接粘贴,但是,部署以后会发现,使用新的工程名访问不了,报404错误. 其原因是没有修改W ...

  8. UVA11419 SAM I AM —— 最小点覆盖 + 输出覆盖点集

    题目链接:https://vjudge.net/problem/UVA-11419 题解: 1.二分图匹配之最小点覆盖.:把x坐标和y坐标看成是点, 图中的目标看成是边,所以最终的目的是求出用最少的点 ...

  9. 以太坊 EVM内交易执行分析(一)

    以太坊上交易最终都会由EVM进行解析存入数据库,今天就来探讨一下,一笔交易是如何别EVM执行的.我们可以把交易分为三种.(注意,和交易相关的模块很多,交易的生命周期存在于整个以太坊中,我们这次只是分析 ...

  10. I.MX6 逻辑分析仪 UART

    /*********************************************************************** * I.MX6 逻辑分析仪 UART * 说明: * ...