题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1124

Problem Description

The most important part of a GSM network is so called Base Transceiver Station (BTS). These transceivers form the areas called cells (this term gave the name to the cellular phone) and every phone connects to the BTS with the strongest signal (in a little simplified view). Of course, BTSes need some attention and technicians need to check their function periodically. 
ACM technicians faced a very interesting problem recently. Given a set of BTSes to visit, they needed to find the shortest path to visit all of the given points and return back to the central company building. Programmers have spent several months studying this problem but with no results. They were unable to find the solution fast enough. After a long time, one of the programmers found this problem in a conference article. Unfortunately, he found that the problem is so called "Travelling Salesman Problem" and it is very hard to solve. If we have N BTSes to be visited, we can visit them in any order, giving us N! possibilities to examine. The function expressing that number is called factorial and can be computed as a product 1.2.3.4....N. The number is very high even for a relatively small N. 
The programmers understood they had no chance to solve the problem. But because they have already received the research grant from the government, they needed to continue with their studies and produce at least some results. So they started to study behaviour of the factorial function. 
For example, they defined the function Z. For any positive integer N, Z(N) is the number of zeros at the end of the decimal form of number N!. They noticed that this function never decreases. If we have two numbers N1<N2, then Z(N1) <= Z(N2). It is because we can never "lose" any trailing zero by multiplying by any positive number. We can only get new and new zeros. The function Z is very interesting, so we need a computer program that can determine its value efficiently.

Input

There is a single positive integer T on the first line of input. It stands for the number of numbers to follow. Then there is T lines, each containing exactly one positive integer number N, 1 <= N <= 1000000000. 

Output

For every number N, output a single line containing the single non-negative integer Z(N).

Sample Input

6
3
60
100
1024
23456
8735373

Sample Output

0
14
24
253
5861
2183837
解题思路:题目说这么多,其实就是求N!尾数为0的个数,套一下上一篇的法二公式即可,水过!
AC代码(280ms):
 #include<iostream>
using namespace std;
int main(){
int n,t,cnt;
while(cin>>t){
while(t--){
cin>>n;cnt=;
while(n>)cnt+=n/,n/=;
cout<<cnt<<endl;
}
}
return ;
}

题解报告:hdu 1124 Factorial(求N!尾数有多少个0。)的更多相关文章

  1. HDU 1124 Factorial (数论)

    http://acm.hdu.edu.cn/showproblem.php? pid=1124 題目好長好長,好可怕,看完腎都萎了,以後肯定活不長.我可不能死在這種小事上,小灰灰我勵志死在少女的超短裙 ...

  2. hdu 1124 Factorial(数论)

    题意: 求n!的尾0的个数 分析: 0一定是由因子2和5相乘产生的: 2的个数显然大于5的个数,故只需统计因子5的个数 n/5不能完全表示n!中5的个数(egg: 25),应该n/=5后,累加上n/2 ...

  3. HDU 1124 Factorial (阶乘后缀0)

    题意: 给一个数n,返回其阶乘结果后缀有几个0. 思路: 首先将n个十进制数进行质因数分解,观察的得到只有2*5才会出现10.那么n!应含有min(2个数,5个数)个后缀0,明显5的个数必定比2少,所 ...

  4. 求N!尾数有多少个0。

    方法一:假设N!=K*10M,K不能被10整除,那么N!尾数就有M个0.再对N!进行质因子分解:N!=2x*3y*5z...由于10=2*5,即每一对2和5相乘都可以得到1个0,所以M只与指数x.z有 ...

  5. 题解报告:hdu 1398 Square Coins(母函数或dp)

    Problem Description People in Silverland use square coins. Not only they have square shapes but also ...

  6. 题解报告:hdu 2069 Coin Change(暴力orDP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2069 Problem Description Suppose there are 5 types of ...

  7. 题解报告:hdu 1028 Ignatius and the Princess III(母函数or计数DP)

    Problem Description "Well, it seems the first problem is too easy. I will let you know how fool ...

  8. 2015浙江财经大学ACM有奖周赛(一) 题解报告

    2015浙江财经大学ACM有奖周赛(一) 题解报告 命题:丽丽&&黑鸡 这是命题者原话. 题目涉及的知识面比较广泛,有深度优先搜索.广度优先搜索.数学题.几何题.贪心算法.枚举.二进制 ...

  9. cojs 强连通图计数1-2 题解报告

    OwO 题目含义都是一样的,只是数据范围扩大了 对于n<=7的问题,我们直接暴力搜索就可以了 对于n<=1000的问题,我们不难联想到<主旋律>这一道题 没错,只需要把方程改一 ...

随机推荐

  1. 最新---java多线程下载文件

    import java.io.InputStream; import java.io.RandomAccessFile; import java.net.HttpURLConnection; impo ...

  2. android事件分发(二)

    非常早之前写过一篇android事件分发的博客,主要写的是它是怎样分发的,具体非常多原理的东西都没有涉及到.今天就从源代码看android怎样控制它的分发机制. 鉴于手机屏幕的限制,所以android ...

  3. Binder IPC的权限控制

    PS:个人理解:当进程1通过Binder调用组件2时,会将进程1的pid及uid赋给组件2,并检测进程1的pid及uid是否有权限调用组件2.而后组件2需要调用组件3,此时组件2保存的pid及uid为 ...

  4. Linux - Ubuntu中文输入法安装(Ubuntu 12.04)

    Ubuntu中文输入法安装(Ubuntu 12.04) 本文地址:http://blog.csdn.net/caroline_wendy Ubuntu作为Linux常见的操作系统,是须要熟练使用的. ...

  5. grep命令使用技巧

    grep如何实现全词查找例如:要查找name这个单词,反馈的查找结果不能包含namespace这样的模式,但是可以包含name()这样的模式,即要查找的单词两端不可以有其他的数字或者字母,但可以有空格 ...

  6. (2)mac下安装MySql数据库软件

    一,软件下载: https://dev.mysql.com/downloads/mysql/ 也可以从其他资源下载.不一定非要官方下载 二,安装 这个比较简单,之间双击开启安装程序,一直下一步就可以. ...

  7. javaScript改变HTML

    改变HTML输出流: 在JavaScript中,document.write() 可用于直接向HTML输出流写内容 <!DOCTYPE html> <html> <bod ...

  8. get the default proxy by Powershell

    https://stackoverflow.com/questions/571429/powershell-web-requests-and-proxies $proxyAddr = (get-ite ...

  9. HDU - 4333 Revolving Digits(拓展kmp+最小循环节)

    1.给一个数字字符串s,可以把它的最后一个字符放到最前面变为另一个数字,直到又变为原来的s.求这个过程中比原来的数字小的.相等的.大的数字各有多少. 例如:字符串123,变换过程:123 -> ...

  10. I.MX6 dhcpcd 需要指定网卡

    /************************************************************************** * I.MX6 dhcpcd 需要指定网卡 * ...