分析

阶梯NIM模型:共有m+1堆石子,石子总数不超过n-m,求必胜的,即奇数堆石子数目异或和非零的局面数。补集转化,答案C(n,m)-奇数堆石子数目异或和位0的局面数。

可以想到按位dp,设f[i,j]表示已经考虑了前i位(异或和0),石子和为j的方案数;转移时考虑下一位出现的被统计1的个数k,k为偶数,带系数C((m+1)/2,k),即m+1/2个奇数堆中出现k个1的方案。

最后将没有分配的n-m-i个石子放入m/2个偶数堆中,可以一个都不放。

实现

#include <bits/stdc++.h>
#define ll long long
using namespace std; const int N=2e5+10;
const int mod=1e9+9; int n,m;
ll fc[N],fv[N],f[20][N]; inline ll c(int n,int m) {
return fc[n]*fv[m]%mod*fv[n-m]%mod;
} int main() {
scanf("%d%d",&n,&m);
fc[0]=fc[1]=fv[0]=fv[1]=1;
for(int i=2; i<=n+m; ++i) fv[i]=fv[mod%i]*(mod-mod/i)%mod;
for(int i=2; i<=n+m; ++i) fv[i]=fv[i-1]*fv[i]%mod,fc[i]=fc[i-1]*i%mod;
f[19][0]=1;
for(int i=19; i; --i)
for(int j=0; j<=n-m; ++j) if(f[i][j])
for(int k=0; k<=(m+1)/2&&j+(k<<(i-1))<=n-m; k+=2)
(f[i-1][j+(k<<(i-1))]+=f[i][j]*c((m+1)/2,k)%mod)%=mod;
int ans=c(n,m);
for(int i=0; i<=n-m; ++i) ans=(ans-f[0][i]*c(n-m-i+m/2,m/2)+mod)%mod;
printf("%d\n",ans);
return 0;
}

暴力

#include <bits/stdc++.h>
#include <typeinfo>
#define ll long long
using namespace std; const int N=255;
const int M=55;
const int mod=1e9+9; int n,m,T;
int f[M][N][N<<2];
inline void add(int&x,int y) {
if((x+=y)>=mod) x-=mod;
} int main() {
scanf("%d%d",&n,&m);
for(T=1; T<n; T<<=1);
f[0][0][0]=1;
for(int j=0; j<m; ++j) {
int(&F)[N][N<<2]=f[j+1];
int(&G)[N][N<<2]=f[j];
if(j&1) {
for(int i=j; i<=n; ++i)
for(int p=0; p<T; ++p) if(G[i][p])
for(int k=i+1; k<=n; ++k)
add(F[k][p],G[i][p]);
}
else {
for(int i=j; i<=n; ++i)
for(int p=0; p<T; ++p) if(G[i][p])
for(int k=i+1; k<=n; ++k)
add(F[k][p^(k-i-1)],G[i][p]);
}
}
int ans=0;
for(int i=m; i<=n; ++i)
for(int p=1; p<T; ++p)
add(ans,f[m][i][p]);
printf("%d\n",ans);
return 0;
}

[SDOI2019] 移动金币的更多相关文章

  1. 【洛谷5363】[SDOI2019] 移动金币(动态规划)

    点此看题面 大致题意: 有\(n\)个格子,让你摆放\(m\)个金币.二人博弈,每次选择一个金币向左移任意格,无法移动者输.问有多少种方案使先手必胜. 阶梯\(Nim\) 阶梯\(Nim\)的基本模型 ...

  2. Luogu P5363 [SDOI2019]移动金币

    话说这题放在智推里好久了的说,再不写掉对不起自己233 首先你要知道一个叫做阶梯Nim的东西,具体的可以看这篇博客 那么我们发现这和这道题的关系就很明显了,我们把两个金币之间的距离看作阶梯Nim的每一 ...

  3. # [SDOI2019]移动金币 阶梯博弈 dp

    [SDOI移动金币 链接 vijos 思路 阶梯博弈,dp统计. 参见wxyww 代码 #include <bits/stdc++.h> using namespace std; cons ...

  4. Luogu5363 SDOI2019移动金币(博弈+动态规划)

    容易想到可以转化为一个有m堆石子,石子总数不超过n-m的阶梯博弈.阶梯博弈的结论是相当于只考虑奇数层石子的nim游戏. nim和不为0不好算,于是用总方案数减掉nim和为0的方案数.然后考虑dp,按位 ...

  5. [VIJOS2055][SDOI2019]移动金币:DP+组合数学

    分析 显然可以转化为阶梯nim. 于是问题转化为了对于所有\(i \in [0,n-m]\),求长度为\(\lfloor\frac{m+1}{2}\rfloor\),和为\(i\),异或和非\(0\) ...

  6. [SDOI2019]移动金币(博弈论+阶梯Nim+按位DP)

    首先可以把问题转化一下:m堆石子,一共石子数不超过(n-m)颗,每次可以将一堆中一些石子推向前一堆,无法操作则失败,问有多少种方法使得先手必胜? 然后这个显然是个阶梯Nim,然后有这样的结论:奇数层异 ...

  7. 分金币 bzoj 3293

    分金币(1s 128M)  coin [问题描述] 圆桌上坐着n个人,每人有一定数量的金币,金币总数能被n整除.每个人可以给他左右相邻的人一些金币,最终使得每个人的金币数目相等.你的任务是求出被转手的 ...

  8. Android播放gif动画,增加屏幕掉金币效果

    前言:播放gif的版本有很多,我这边使用Android自带的Movie类播放gif动画,也是在别人的基础上进行修改.有同样需求的朋友可以参考我的demo. 1.效果图如下: 2.部分主要代码 Main ...

  9. noi 1.5 45:金币

    描述 国王将金币作为工资,发放给忠诚的骑士.第一天,骑士收到一枚金币:之后两天(第二天和第三天)里,每天收到两枚金币:之后三天(第四.五.六天)里,每天收到三枚金币:之后四天(第七.八.九.十天)里, ...

随机推荐

  1. python学习之 - re模块

    re模块功能:实现字符串匹配. 元字符 描述\ 将下一个字符标记符.或一个向后引用.或一个八进制转义符.例如,“\\n”匹配\n.“\n”匹配换行符.序列“\\”匹配“\”而“\(”则匹配“(”.即相 ...

  2. Educational Codeforces Round 37 (Rated for Div. 2) G

    G. List Of Integers time limit per test 5 seconds memory limit per test 256 megabytes input standard ...

  3. React学习及实例开发(二)——用Ant Design写一个简单页面

    本文基于React v16.4.1 初学react,有理解不对的地方,欢迎批评指正^_^ 一.引入Ant Design 1.安装antd yarn add antd 2.引入 react-app-re ...

  4. Toy Storage--POJ2398(计算几何)

    http://poj.org/problem?id=2398 这道题和上一道TOYS是一样的   就是输出不一样  还有就是这个给的是乱序  你要先对挡板排序 #include <iostrea ...

  5. 洛谷——P2434 [SDOI2005]区间

    P2434 [SDOI2005]区间 题目描述 现给定n个闭区间[ai, bi],1<=i<=n.这些区间的并可以表示为一些不相交的闭区间的并.你的任务就是在这些表示方式中找出包含最少区间 ...

  6. Spring基于注解的配置概述

    以下内容引用自http://wiki.jikexueyuan.com/project/spring/annotation-based-configuration.html: 从Spring 2.5开始 ...

  7. CommonTabLayout+ViewPager快速完成APP首页搭建

    款APP开始的时候往往少不了多页面的切换,这就涉及到viewpager的使用,以前往往用Google自带的效果去实现,比较麻烦不说,后面做出来的效果还不如人意. 下面就利用CommonTabLayou ...

  8. 如何在不允许联网的环境下使用Maven开发

    前言:Maven的运行机理是:Maven核心组件先去本地的.m2目录下的库中去寻找依赖或者插件,如果本地库里没有,如果配置了私服则上私服去下载依赖或者插件,如果私服上没有,则上中央服务等Maven服务 ...

  9. 火狐浏览器Firefox 如何下载网页的SWF视频,硅谷动力的网站视频怎么下载

    1 使用火狐浏览器查看到底视频在哪里,我随便开了一段视频,发现这个SWF(外框套了一个Control.swf,内层才是真实的09-class.swf)   2 我们从下面这一段代码中进行分析 < ...

  10. Zookeeper中的FastLeaderElection选举算法简述

    Zookeeper是一个开源的分布式应用协调项目, 当中为了保证各节点的协同工作,Zookeeper在工作时须要有一个Leader. 而Leader是怎样被选举出来的?Zookeep中使用的缺省算法称 ...