在回家的路上,凯伦决定到超市停下来买一些杂货。 她需要买很多东西,但因为她是学生,所以她的预算仍然很有限。

事实上,她只花了b美元。

超市出售N种商品。第i件商品可以以ci美元的价格购买。当然,每件商品只能买一次。

最近,超市一直在努力促销。凯伦作为一个忠实的客户,收到了n张优惠券。

如果凯伦购买i次商品,她可以用i次优惠券降低di美元。 当然,不买对应的商品,优惠券不能使用。

然而,对于优惠券有一个规则。对于所有i>=2,为了使用i张优惠券,凯伦必须买第j个商品。

凯伦想知道。她能在不超过预算B的情况下购买的最大商品数量是多少?

输入输出样例

输入样例#1: 复制

6 16

10 9

10 5 1

12 2 1

20 18 3

10 2 3

2 1 5

输出样例#1: 复制

4

Solution

考试题目写挂,看错题了。想看原题的戳这里。树型dp,我们定义\(f[i][j][2]\)代表i结点选了j个节点,当前节点选不选。容易想到dp方程为

\[f[x][k+j][0]=min(f[x][k+j][0],f[to][j][0]+f[x][k][0]);
\]

\[f[x][k+j][0]=min(f[x][k+j][0],f[to][j][1]+f[x][k][0]);
\]

\[f[x][k+j][1]=min(f[x][k+j][1],f[to][j][1]-v[to]+f[x][k][1]);
\]

\[f[x][k+j][1]=min(f[x][k+j][1],f[to][j][1]+f[x][k][1]);
\]

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
struct node
{
int to,next;
}a[1000100];
int w[101000],v[100100],len,last[101010],son[100010],tot;
int f[5100][5100][2];
void add(int a1,int a2)
{
a[++len].to=a2;
a[len].next=last[a1];
last[a1]=len;
}
void dp(int x,int father)
{
son[x]=1;
for(int i=last[x];i;i=a[i].next)
{
int to=a[i].to;
if(to==father)
continue;
dp(to,x);
for(int k=son[x];k>=0;k--)
for(int j=son[to];j>=0;j--)
{
f[x][k+j][0]=min(f[x][k+j][0],f[to][j][0]+f[x][k][0]);
f[x][k+j][0]=min(f[x][k+j][0],f[to][j][1]+f[x][k][0]);
f[x][k+j][1]=min(f[x][k+j][1],f[to][j][1]-v[to]+f[x][k][1]);
f[x][k+j][1]=min(f[x][k+j][1],f[to][j][0]+f[x][k][1]);
}
son[x]+=son[to];
}
}
int main()
{
//freopen("shopping.in","r",stdin);
//freopen("shopping.out","w",stdout);
memset(f,0x3f,sizeof(f));
int n,s,x;
cin>>n>>s;
cin>>w[1]>>v[1];
w[1]-=v[1];
f[1][0][0]=0;f[1][1][1]=w[1];
for(int i=2;i<=n;i++)
{
scanf("%d%d%d",&w[i],&v[i],&x);
add(x,i);add(i,x);
}
for(int i=2;i<=n;i++)
f[i][0][0]=0,f[i][1][1]=w[i];
dp(1,0);
for(int i=n;i>=0;i--)
{
if(f[1][i][0]<=s||f[1][i][1]<=s)
{cout<<i;return 0;}
}
}

博主蒟蒻,可以随意转载,但必须附上原文链接k-z-j

[原创] Karen and Supermarket 2的更多相关文章

  1. Codeforces 815C Karen and Supermarket 树形dp

    Karen and Supermarket 感觉就是很普通的树形dp. dp[ i ][ 0 ][ u ]表示在 i 这棵子树中选择 u 个且 i 不用优惠券的最小花费. dp[ i ][ 1 ][ ...

  2. CF815C Karen and Supermarket

    题目链接 CF815C Karen and Supermarket 题解 只要在最大化数量的前提下,最小化花费就好了 这个数量枚举ok, dp[i][j][1/0]表示节点i的子树中买了j件商品 i ...

  3. CF815C Karen and Supermarket [树形DP]

    题目传送门 Karen and Supermarket On the way home, Karen decided to stop by the supermarket to buy some gr ...

  4. E. Karen and Supermarket

    E. Karen and Supermarket time limit per test 2 seconds memory limit per test 512 megabytes input sta ...

  5. Codeforces Round #419 (Div. 1) C. Karen and Supermarket 树形DP

    C. Karen and Supermarket     On the way home, Karen decided to stop by the supermarket to buy some g ...

  6. codeforces 815C Karen and Supermarket

    On the way home, Karen decided to stop by the supermarket to buy some groceries. She needs to buy a ...

  7. codeforces round #419 E. Karen and Supermarket

    On the way home, Karen decided to stop by the supermarket to buy some groceries. She needs to buy a ...

  8. Codeforces 815 C Karen and Supermarket

    On the way home, Karen decided to stop by the supermarket to buy some groceries. She needs to buy a ...

  9. 【Codeforces 815C】Karen and Supermarket

    Codeforces 815 C 考虑树型dp. \(dp[i][0/1][k]\)表示现在在第i个节点, 父亲节点有没有选用优惠, 这个子树中买k个节点所需要花的最小代价. 然后转移的时候枚举i的一 ...

随机推荐

  1. oracle用户密码错误导致用户锁定

    解决方法:使用DBA用户将其解锁: SQL> alter user ecology account unlock; 用户已更改. 用户密码限制设置: 查看FAILED_LOGIN_ATTEMPT ...

  2. Shell脚本学习指南 [ 第三、四章 ] 查找与替换、文本处理工具

    摘要:第三章讨论的是编写Shell脚本时经常用到的两个基本操作.第四章总共介绍了约30种处理文本文件的好用工具. 第三章 查找与替换 概括:本章讨论的是编写Shell脚本时经常用到的两个基本操作:文本 ...

  3. 【Luogu】P2051中国象棋(DP)

    题目链接 去看STDCALL的题解吧 #include<cstdio> #include<cctype> #define mod 9999973 inline long lon ...

  4. System.out.println()和System.out.write()的区别

    这两个函数一个是System.out.write()输出字符流,System.out.println()是输出字节流,很简单.看下面这个程序就明白了.     //import java.util.* ...

  5. 【BZOJ3450】Easy(期望)

    题意: 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(我们来简化一下这个游戏的规则有n次点击要做,成功了就是o,失败了就是x,分数是按comb计算的,连续a个comb就有a ...

  6. 【WEB基础】HTML & CSS 基础入门(5)边框与背景

    前面(HTML图片) 漂亮的网页肯定少不了边框与背景的修饰,本篇笔记就是说明如何为网页上的元素设置边框或者背景(背景颜色和背景图片). 之前,先了解一下HTML中的图片元素,因为图片标签的使用非常简单 ...

  7. emacs 下 common lisp 配置

    安装 sbcl .emacs 加入 ;for lisp mode (add-to-list 'load-path "D:/kuaipan/.emacs.d/elpa/slime-201311 ...

  8. 基于MNIST数据的softmax regression

    跟着tensorflow上mnist基本机器学习教程联系 首先了解sklearn接口: sklearn.linear_model.LogisticRegression In the multiclas ...

  9. SpringCloud中Redis的使用

    1.引入redis相关jar包 <dependency> <groupId>org.springframework.boot</groupId> <artif ...

  10. 转: Code Review 程序员的寄望与哀伤

    转自: http://www.cnblogs.com/mindwind/p/5639008.html 一个程序员,他写完了代码,在测试环境通过了测试,然后他把它发布到了线上生产环境,但很快就发现在生产 ...