51nod 1907(多项式乘法启发式合并)
题目:
分析:
对于一个确定的生成子图,很明显是在一个连通块上走,走完了再跳到另一个连通块上,假设连通块个数为cnt,那么答案一定是$min(a_{cnt-1},a_cnt,..,a_{n-1})$
那现在的问题就是如何求出对于原图而言,连通块个数分别为1,2..n的生成子图的个数
我们去考虑每条边的贡献
在一个仙人掌上只有树边和回路上的边,对于树边如果删除那么肯定连通块个数+1,对于回路上的边,删除一条边不影响,再后面每删除一条边连通块个数+1
我们可以写出它们的生成函数,然后乘起来
对于树边的生成函数明显是$1+x$
对于长度为k的回路,生成函数是$1+\binom{k}{1}+\binom{k}{2}x+\binom{k}{3}x^2+...+\binom{k}{k}x^{k-1}$
然后将它们都乘起来就行了,但这样会TLE
最坏的情况是$(1+x)^n$,这样相当于退化成$O(n^2logn)$,这是因为每次拿一个低阶多项式和一个高阶多项式相乘很浪费时间
可以采取启发式合并,类似合并果子,每次取阶数最小的两个多项式进行NTT相乘,这样时间复杂度就是$O(nlog^2n)$的了
51nod 1907(多项式乘法启发式合并)的更多相关文章
- CodeForces 958F3 Lightsabers (hard) 启发式合并/分治 多项式 FFT
原文链接http://www.cnblogs.com/zhouzhendong/p/8835443.html 题目传送门 - CodeForces 958F3 题意 有$n$个球,球有$m$种颜色,分 ...
- 51nod 1515 明辨是非 启发式合并
1515 明辨是非 题目连接: https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1515 Description 给n组操 ...
- 51Nod 1515 明辨是非 —— 并查集 + 启发式合并
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1515 1515 明辨是非 题目来源: 原创 基准时间限制:1 ...
- 51nod 1515 明辨是非 并查集 + set + 启发式合并
给n组操作,每组操作形式为x y p. 当p为1时,如果第x变量和第y个变量可以相等,则输出YES,并限制他们相等:否则输出NO,并忽略此次操作. 当p为0时,如果第x变量和第y个变量可以不相等,则输 ...
- 【learning】多项式乘法&fft
[吐槽] 以前一直觉得这个东西十分高端完全不会qwq 但是向lyy.yxq.yww.dtz等dalao们学习之后发现这个东西的代码实现其实极其简洁 于是趁着还没有忘记赶紧来写一篇博 (说起来这篇东西的 ...
- 多项式乘法(FFT)学习笔记
------------------------------------------本文只探讨多项式乘法(FFT)在信息学中的应用如有错误或不明欢迎指出或提问,在此不胜感激 多项式 1.系数表示法 ...
- FFT/NTT总结+洛谷P3803 【模板】多项式乘法(FFT)(FFT/NTT)
前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理 ...
- 洛谷.3803.[模板]多项式乘法(FFT)
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...
- 多项式乘法,FFT与NTT
多项式: 多项式?不会 多项式加法: 同类项系数相加: 多项式乘法: A*B=C $A=a_0x^0+a_1x^1+a_2x^2+...+a_ix^i+...+a_{n-1}x^{n-1}$ $B=b ...
随机推荐
- 原生js的容易忽略的相似点(二)
1.new Object 和字面量 {}测试; <script type="text/javascript"> //1.new出来对象 console.log(obj, ...
- asp.net mvc 5 微信接入VB版 - 获取AccessToken
获取AccessToken是微信接入的又一个基础操作.很多微信接口需要这个2小时一刷新的AccessToken作为参数. 转载请说明作者Nukepayload2 首先根据开发文档把获取AccessTo ...
- 为什么要使用spl_autoload_unregister
最近学习 laravel 源码,发现他的 autoload_real.php 里面有一段: spl_autoload_register(array('ComposerAutoloaderInit290 ...
- Linux之 if命令——简单的shell文件
如何写一个shell文件,写一个小脚本 1.新建一个脚本文件:vi demo.sh 2.追加执行权限: chmod u+x demo.sh 3.执行脚本:./demo.sh 4.什么是脚本?把一堆命令 ...
- 1-1 编程基础 GCC程序编译
GCC简介 Linux系统下的gcc是GNU推出的强大.性能优越的多平台编译器,是GNU的代表作之一.gcc可以在多种硬体平台上编译出可执行程序,其执行效率与一般的编译器相比平局效率要高20 ...
- Chrome浏览器安装React developer tools
1. 到 https://github.com/facebook/react-devtools 下载 react-devtools 2. 进入 react-devtools 目录 运行命令 npm ...
- C++:new的使用
这里先开个头,以后做详细补充个: new 分配内存失败后会返回空指针:
- QT+lambda 表达式
#include "mainwidget.h" #include <QPushButton> #include <QDebug> MainWidget::M ...
- Hibernate5.x版本HQL限定查询 Legacy-style query parameters (`?`) are no longer supported
在此版本的限定查询和4.0版本的限定查询: 如果查询语句是: String hql = "select u from User u where u.gender = ?"; 会出现 ...
- 《3+1团队》【Alpha】Scrum meeting 1
项目 内容 这个作业属于哪个课程 任课教师博客主页链接 这个作业的要求在哪里 作业链接地址 团队名称 3+1团队 团队博客地址 https://home.cnblogs.com/u/3-1group ...