http://poj.org/problem?id=2007

Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 6701   Accepted: 3185

Description

A closed polygon is a figure bounded by a finite number of line segments. The intersections of the bounding line segments are called the vertices of the polygon. When one starts at any vertex of a closed polygon and traverses each bounding line segment exactly once, one comes back to the starting vertex.

A closed polygon is called convex if the line segment joining any two points of the polygon lies in the polygon. Figure 1 shows a closed polygon which is convex and one which is not convex. (Informally, a closed polygon is convex if its border doesn't have any "dents".) 

The subject of this problem is a closed convex polygon in the coordinate plane, one of whose vertices is the origin (x = 0, y = 0). Figure 2 shows an example. Such a polygon will have two properties significant for this problem.

The first property is that the vertices of the polygon will be confined to three or fewer of the four quadrants of the coordinate plane. In the example shown in Figure 2, none of the vertices are in the second quadrant (where x < 0, y > 0).

To describe the second property, suppose you "take a trip" around the polygon: start at (0, 0), visit all other vertices exactly once, and arrive at (0, 0). As you visit each vertex (other than (0, 0)), draw the diagonal that connects the current vertex with (0, 0), and calculate the slope of this diagonal. Then, within each quadrant, the slopes of these diagonals will form a decreasing or increasing sequence of numbers, i.e., they will be sorted. Figure 3 illustrates this point. 
 

Input

The input lists the vertices of a closed convex polygon in the plane. The number of lines in the input will be at least three but no more than 50. Each line contains the x and y coordinates of one vertex. Each x and y coordinate is an integer in the range -999..999. The vertex on the first line of the input file will be the origin, i.e., x = 0 and y = 0. Otherwise, the vertices may be in a scrambled order. Except for the origin, no vertex will be on the x-axis or the y-axis. No three vertices are colinear.

Output

The output lists the vertices of the given polygon, one vertex per line. Each vertex from the input appears exactly once in the output. The origin (0,0) is the vertex on the first line of the output. The order of vertices in the output will determine a trip taken along the polygon's border, in the counterclockwise direction. The output format for each vertex is (x,y) as shown below.

Sample Input

0 0
70 -50
60 30
-30 -50
80 20
50 -60
90 -20
-30 -40
-10 -60
90 10

Sample Output

(0,0)
(-30,-40)
(-30,-50)
(-10,-60)
(50,-60)
(70,-50)
(90,-20)
(90,10)
(80,20)
(60,30)

Source

××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××

这题,,,,,这什么玩意啊

推荐个网站:http://www.cnblogs.com/devtang/archive/2012/02/01/2334977.html

《叉积排序,也就是可以排180度以内的,超出就会出错,
因为正弦函数在180内为正数,180到360为负数。》
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <algorithm>
#include <math.h> #define MAXX 105 using namespace std; typedef struct point
{
int x,y;
}point;
typedef struct line
{
point st,ed;
}beline; int crossProduct(point a,point b,point c)
{
return (c.x-a.x)*(b.y-a.y)-(c.y-a.y)*(b.x-a.x);
} double Dist(point a,point b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
} point c[MAXX];
point stk[MAXX];
int top;
bool cmp(point a,point b)
{
int len=crossProduct(c[],a,b);
if(len == )
return Dist(c[],a)<Dist(c[],b);
else
return len<;
} int main()
{
int i,j,k,t,x,y;
i=;
while(scanf("%d%d",&x,&y)!=EOF)
{
c[i].x=x;
c[i].y=y;
i++;
}
sort(c+,c+i,cmp);
for(int j=; j<i; j++)
printf("(%d,%d)\n",c[j].x,c[j].y);
}

poj 2007 Scrambled Polygon(极角排序)的更多相关文章

  1. poj 2007 Scrambled Polygon 极角排序

    /** 极角排序输出,,, 主要atan2(y,x) 容易失精度,,用 bool cmp(point a,point b){ 5 if(cross(a-tmp,b-tmp)>0) 6 retur ...

  2. POJ 2007 Scrambled Polygon 极角序 水

    LINK 题意:给出一个简单多边形,按极角序输出其坐标. 思路:水题.对任意两点求叉积正负判断相对位置,为0则按长度排序 /** @Date : 2017-07-13 16:46:17 * @File ...

  3. POJ 2007 Scrambled Polygon [凸包 极角排序]

    Scrambled Polygon Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 8636   Accepted: 4105 ...

  4. 简单几何(极角排序) POJ 2007 Scrambled Polygon

    题目传送门 题意:裸的对原点的极角排序,凸包貌似不行. /************************************************ * Author :Running_Time ...

  5. POJ 2007 Scrambled Polygon (简单极角排序)

    题目链接 题意 : 对输入的点极角排序 思路 : 极角排序方法 #include <iostream> #include <cmath> #include <stdio. ...

  6. POJ 2007 Scrambled Polygon(简单极角排序)

    水题,根本不用凸包,就是一简单的极角排序. 叉乘<0,逆时针. #include <iostream> #include <cstdio> #include <cs ...

  7. ●POJ 2007 Scrambled Polygon

    题链: http://poj.org/problem?id=2007 题解: 计算几何,极角排序 按样例来说,应该就是要把凸包上的i点按 第三像限-第四像限-第一像限-第二像限 的顺序输出. 按 叉积 ...

  8. POJ 2007 Scrambled Polygon 凸包

    Scrambled Polygon Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 7214   Accepted: 3445 ...

  9. POJ 2007 Scrambled Polygon 凸包点排序逆时针输出

    题意:如题 用Graham,直接就能得到逆时针的凸包,找到原点输出就行了,赤果果的水题- 代码: /* * Author: illuz <iilluzen[at]gmail.com> * ...

随机推荐

  1. 根据linux内核源码查找recv返回EBADF(errno 9)的原因

    linux的内核版本是2.6.18,x86_64. man里的解释是: EBADF The argument s is an invalid descriptor 我的模拟测试环境是: 前端loadr ...

  2. oracle 序列 ,check约束

    ====================序列 //查询当前用户序列 select * from user_sequences //查询所有序列 select * from all_sequences; ...

  3. Windows cmd 颜色,字体,color font set up

    windows的cmds默认的字体很丑,丑的不认直视,『如花』一般. 但是总有用到的时候 这是我有优化的一种结果,怎么来弄呢 要字体颜色漂亮,先要在注册表的Console中注册你要使用的字体,这个至关 ...

  4. HTTP 请求未经客户端身份验证方案“Anonymous”授权。从服务器收到的身份验证标头为“Negotiate,NTLM”

    转自:http://www.cnblogs.com/geqinggao/p/3270499.html 近来项目需要Web Service验证授权,一般有两种解决方案: 1.通过通过SOAP Heade ...

  5. 浏览器检测navigator 对象

    1.浏览器及版本号不同的浏览器支持的功能.属性和方法各有不同.比如IE 和Firefox 显示的页面可能就会有所略微不同. alert('浏览器名称:' + navigator.appName); a ...

  6. quick lua 使用spine骨骼动画

    看下下面两个文件 <spine/SkeletonRenderer.h><spine/SkeletonAnimation.h> 1.lua中创建方法: sp.SkeletonAn ...

  7. Linux编译安装Mysql步骤

    一. Centos 用 wget 下载需要的软件,保存到目录/home/zwl/MySql/下 wget http://dev.mysql.com/get/Downloads/MySQL-5.5/my ...

  8. Android 坐标与宽高研究getLeft() getTop() getRight()和getBottom()

    把view看做一个矩形,分别表示的是一个view的左边,上边,右边,下边距离他的父组件的距离. getRight() =getLeft() + getWidth() getBottom()= getT ...

  9. hdu4914 Linear recursive sequence

    用矩阵求解线性递推式通项 用fft优化矩阵乘法 首先把递推式求解转化为矩阵求幂,再利用特征多项式f(λ)满足f(A) = 0,将矩阵求幂转化为多项式相乘, 最后利用傅里叶变换的高效算法(迭代取代递归) ...

  10. reactjs入门到实战(三)---- 组件详解

    owner  >>> 传递 props this >>>是默认指向组件本身 key>>>不能没有,在复用的情况下 组件:例子 <!-- 输入 ...