lucene字典实现原理——FST
转自:http://www.cnblogs.com/LBSer/p/4119841.html
1 lucene字典
使用lucene进行查询不可避免都会使用到其提供的字典功能,即根据给定的term找到该term所对应的倒排文档id列表等信息。实际上lucene索引文件后缀名为tim和tip的文件实现的就是lucene的字典功能。
怎么实现一个字典呢?我们马上想到排序数组,即term字典是一个已经按字母顺序排序好的数组,数组每一项存放着term和对应的倒排文档id列表。每次载入索引的时候只要将term数组载入内存,通过二分查找即可。这种方法查询时间复杂度为Log(N),N指的是term数目,占用的空间大小是O(N*str(term))。排序数组的缺点是消耗内存,即需要完整存储每一个term,当term数目多达上千万时,占用的内存将不可接受。
2 常用字典数据结构
很多数据结构均能完成字典功能,总结如下。
数据结构 | 优缺点 |
排序列表Array/List | 使用二分法查找,不平衡 |
HashMap/TreeMap | 性能高,内存消耗大,几乎是原始数据的三倍 |
Skip List | 跳跃表,可快速查找词语,在lucene、redis、Hbase等均有实现。相对于TreeMap等结构,特别适合高并发场景(Skip List介绍) |
Trie | 适合英文词典,如果系统中存在大量字符串且这些字符串基本没有公共前缀,则相应的trie树将非常消耗内存(数据结构之trie树) |
Double Array Trie | 适合做中文词典,内存占用小,很多分词工具均采用此种算法(深入双数组Trie) |
Ternary Search Tree | 三叉树,每一个node有3个节点,兼具省空间和查询快的优点(Ternary Search Tree) |
Finite State Transducers (FST) | 一种有限状态转移机,Lucene 4有开源实现,并大量使用 |
3 FST原理简析
lucene从4开始大量使用的数据结构是FST(Finite State Transducer)。FST有两个优点:1)空间占用小。通过对词典中单词前缀和后缀的重复利用,压缩了存储空间;2)查询速度快。O(len(str))的查询时间复杂度。
下面简单描述下FST的构造过程(工具演示:http://examples.mikemccandless.com/fst.py?terms=&cmd=Build+it%21)。我们对“cat”、 “deep”、 “do”、 “dog” 、“dogs”这5个单词进行插入构建FST(注:必须已排序)。
1)插入“cat”
插入cat,每个字母形成一条边,其中t边指向终点。
2)插入“deep”
与前一个单词“cat”进行最大前缀匹配,发现没有匹配则直接插入,P边指向终点。
3)插入“do”
与前一个单词“deep”进行最大前缀匹配,发现是d,则在d边后增加新边o,o边指向终点。
4)插入“dog”
与前一个单词“do”进行最大前缀匹配,发现是do,则在o边后增加新边g,g边指向终点。
5)插入“dogs”
与前一个单词“dog”进行最大前缀匹配,发现是dog,则在g后增加新边s,s边指向终点。
最终我们得到了如上一个有向无环图。利用该结构可以很方便的进行查询,如给定一个term “dog”,我们可以通过上述结构很方便的查询存不存在,甚至我们在构建过程中可以将单词与某一数字、单词进行关联,从而实现key-value的映射。
4 FST使用与性能评测
我们可以将FST当做Key-Value数据结构来进行使用,特别在对内存开销要求少的应用场景。Lucene已经为我们提供了开源的FST工具,下面的代码是使用说明。
1 public static void main(String[] args) {
2 try {
3 String inputValues[] = {"cat", "deep", "do", "dog", "dogs"};
4 long outputValues[] = {5, 7, 17, 18, 21};
5 PositiveIntOutputs outputs = PositiveIntOutputs.getSingleton(true);
6 Builder<Long> builder = new Builder<Long>(FST.INPUT_TYPE.BYTE1, outputs);
7 BytesRef scratchBytes = new BytesRef();
8 IntsRef scratchInts = new IntsRef();
9 for (int i = 0; i < inputValues.length; i++) {
10 scratchBytes.copyChars(inputValues[i]);
11 builder.add(Util.toIntsRef(scratchBytes, scratchInts), outputValues[i]);
12 }
13 FST<Long> fst = builder.finish();
14 Long value = Util.get(fst, new BytesRef("dog"));
15 System.out.println(value); // 18
16 } catch (Exception e) {
17 ;
18 }
19 }
FST压缩率一般在3倍~20倍之间,相对于TreeMap/HashMap的膨胀3倍,内存节省就有9倍到60倍!(摘自:把自动机用作 Key-Value 存储),那FST在性能方面真的能满足要求吗?
下面是我在苹果笔记本(i7处理器)进行的简单测试,性能虽不如TreeMap和HashMap,但也算良好,能够满足大部分应用的需求。
参考文献
http://sbp810050504.blog.51cto.com/2799422/1361551
http://blog.sina.com.cn/s/blog_4bec92980101hvdd.html
http://blog.mikemccandless.com/2013/06/build-your-own-finite-state-transducer.html
lucene字典实现原理——FST的更多相关文章
- lucene字典实现原理
http://www.cnblogs.com/LBSer/p/4119841.html 1 lucene字典 使用lucene进行查询不可避免都会使用到其提供的字典功能,即根据给定的term找到该te ...
- lucene字典实现原理(转)
原文:https://www.cnblogs.com/LBSer/p/4119841.html 1 lucene字典 使用lucene进行查询不可避免都会使用到其提供的字典功能,即根据给定的term找 ...
- Elasticsearch Lucene 数据写入原理 | ES 核心篇
前言 最近 TL 分享了下 <Elasticsearch基础整理>https://www.jianshu.com/p/e8226138485d ,蹭着这个机会.写个小文巩固下,本文主要讲 ...
- iOS 字典实现原理
在目前的开发中,NSDictionary是经常被使用,不过很少人会研究字典NSDictionary底层的实现,下面我们来一起看一下NSDictionary的实现原理. 一.字典原理 字典通过使用- ( ...
- 03.什么是Lucene全文检索的原理01
全文检索的原理:查询速度快,精准度高,可以根据相关度进行排序.它的原理是:先把内容分词,分词之后建索引. Lucene是apache下的一个开放源代码的全文检索引擎工具包. 提供了完整的查询引擎和索引 ...
- 42 (OC)* 字典实现原理--哈希原理
一.NSDictionary使用原理 1.NSDictionary(字典)是使用 hash表来实现key和value之间的映射和存储的,hash函数设计的好坏影响着数据的查找访问效率. - (void ...
- Elasticsearch原理入门
这是一篇拼接贴,我是缝合怪 项目中用到了es,使用方法是挺简单的,封装了基本api以后,把查询条件封装一下传给client执行就可,但是光使用比较肤浅,研究一下原理和本质,更利于以后开发使用 扫盲贴 ...
- lucene索引文件大小优化小结
http://www.cnblogs.com/LBSer/p/4068864.html 随着业务快速发展,基于lucene的索引文件zip压缩后也接近了GB量级,而保持索引文件大小为一个可以接受的范围 ...
- lucene join解决父子关系索引
http://www.cnblogs.com/LBSer/p/4417074.html 1 背景 以商家(Poi)维度来展示各种服务(比如团购(deal).直连)正变得越来越流行(图1a), 比如目前 ...
随机推荐
- Python基础学习笔记(四)语句
参考资料: 1. <Python基础教程> 2. http://www.runoob.com/python/python-chinese-encoding.html 3. http://w ...
- 关于cmbiling.jar cocos2dx的问题
CMBilling.jar是移动基地的支付库,这样的配置在eclipse下能编译通过,可是用cocos compile命令却找不到这个库及相应的接口函数,移动有个特殊要求,它不允许CMBilling ...
- sp_getTable_data
CREATE PROC sp_Select_Table ) AS begin ) SET @sql='SELECT * FROM ' + @TableName EXEC (@sql) end GO
- activiti5.15中文乱码问题
解决方式: 1.配置文件插入 <bean id="processEngineConfiguration" class="org.activiti.spring.Sp ...
- spring DI原理
什么是IOC? 也称依赖注入 当一个类,需要另一个类的时候,我们不需要再另一个类里进行创建 对象,spring容器会给我们自动的创建 IOC的实现? 通过一定的技术读取spring.xml文件信息,比 ...
- ubuntu12.04_命令
1. 切换 终端方式 与 图形界面方式: 切换到 终端方式:ctrl+alt+F1~F6(貌似有时 alt+F1~F6也行?) 切换回 图形界面方式:ctrl+alt+F7 2. ubuntu12.0 ...
- 理解odbc
1.解决什么样的问题?不同的数据库产品,具有不同的特性,也就是方言.因此应用程序针对不同的数据库产品,编写不同的代码.如果换了一个数据库产品,还需要重新编写数据库交互部分,不具备扩展和移植.odbc对 ...
- Nginx 启用gzip压缩
1. 网页压缩 网页压缩是一项由 WEB 服务器和浏览器之间共同遵守的协议,也就是说 WEB 服务器和浏览器都必须支持该技术,所幸的是现在流行的浏览器都是支持的,包括 IE.FireFox.Opera ...
- hdu1907(anti-sg入门)
改变了下规则,现在变成了最后拿的人输. 如果对于单纯的nim的话,只需要判断每堆都是1个石子的特殊情况. 因为如果存在有大于1个石子的堆话,类似于nim的取法,处于必胜状态的一方只需要在 对方取完后只 ...
- Hadoop 基本操作
1.关闭安全模式 hadoop dfsadmin -safemode leave