Machine Learning for hackers读书笔记(十二)模型比较
library('ggplot2')
df <- read.csv('G:\\dataguru\\ML_for_Hackers\\ML_for_Hackers-master\\12-Model_Comparison\\data\\df.csv')
#用glm
logit.fit <- glm(Label ~ X + Y,family = binomial(link = 'logit'),data = df)
logit.predictions <- ifelse(predict(logit.fit) > 0, 1, 0)
mean(with(df, logit.predictions == Label))
#正确率 0.5156,跟猜差不多一样的结果
library('e1071')
svm.fit <- svm(Label ~ X + Y, data = df)
svm.predictions <- ifelse(predict(svm.fit) > 0, 1, 0)
mean(with(df, svm.predictions == Label))
#改用SVM,正确率72%
library("reshape")
#df中的字段,X,Y,Label,Logit,SVM
df <- cbind(df,data.frame(Logit = ifelse(predict(logit.fit) > 0, 1, 0),SVM = ifelse(predict(svm.fit) > 0, 1, 0)))
#melt的结果,增加字段variable,其中的值有Label,Logit,SVM,增加字段value,根据variable取相应的值
#melt函数:指定变量,将其他剩下的字段作为一个列,把对应的取值列出.melt和cast,好像是相反的功能
predictions <- melt(df, id.vars = c('X', 'Y'))
ggplot(predictions, aes(x = X, y = Y, color = factor(value))) + geom_point() + facet_grid(variable ~ .)
#如下图,Label为真实结果,Lgm完全没用,而SVM有所识别,但边缘不对
#SVM函数有个kernel参数,取值有4个:linear,polynomial,radial和sigmoid,4个都画出来看看
df <- df[, c('X', 'Y', 'Label')]
linear.svm.fit <- svm(Label ~ X + Y, data = df, kernel = 'linear')
with(df, mean(Label == ifelse(predict(linear.svm.fit) > 0, 1, 0)))
polynomial.svm.fit <- svm(Label ~ X + Y, data = df, kernel = 'polynomial')
with(df, mean(Label == ifelse(predict(polynomial.svm.fit) > 0, 1, 0)))
radial.svm.fit <- svm(Label ~ X + Y, data = df, kernel = 'radial')
with(df, mean(Label == ifelse(predict(radial.svm.fit) > 0, 1, 0)))
sigmoid.svm.fit <- svm(Label ~ X + Y, data = df, kernel = 'sigmoid')
with(df, mean(Label == ifelse(predict(sigmoid.svm.fit) > 0, 1, 0)))
df <- cbind(df,
data.frame(LinearSVM = ifelse(predict(linear.svm.fit) > 0, 1, 0),
PolynomialSVM = ifelse(predict(polynomial.svm.fit) > 0, 1, 0),
RadialSVM = ifelse(predict(radial.svm.fit) > 0, 1, 0),
SigmoidSVM = ifelse(predict(sigmoid.svm.fit) > 0, 1, 0)))
predictions <- melt(df, id.vars = c('X', 'Y'))
ggplot(predictions, aes(x = X, y = Y, color = factor(value))) + geom_point() + facet_grid(variable ~ .)
#如下图,线性和多项式没用,radial还行,sigmoid很奇怪
#svm有个参数叫degree,看看效果
polynomial.degree3.svm.fit <- svm(Label ~ X + Y, data = df, kernel = 'polynomial', degree = 3)
with(df, mean(Label != ifelse(predict(polynomial.degree3.svm.fit) > 0, 1, 0)))
polynomial.degree5.svm.fit <- svm(Label ~ X + Y,data = df,kernel = 'polynomial',degree = 5)
with(df, mean(Label != ifelse(predict(polynomial.degree5.svm.fit) > 0, 1, 0)))
polynomial.degree10.svm.fit <- svm(Label ~ X + Y,data = df,kernel = 'polynomial',degree = 10)
with(df, mean(Label != ifelse(predict(polynomial.degree10.svm.fit) > 0, 1, 0)))
polynomial.degree12.svm.fit <- svm(Label ~ X + Y, data = df, kernel = 'polynomial', degree = 12)
with(df, mean(Label != ifelse(predict(polynomial.degree12.svm.fit) > 0, 1, 0)))
df <- df[, c('X', 'Y', 'Label')]
df <- cbind(df,
data.frame(Degree3SVM = ifelse(predict(polynomial.degree3.svm.fit) > 0, 1, 0),
Degree5SVM = ifelse(predict(polynomial.degree5.svm.fit) > 0, 1, 0),
Degree10SVM = ifelse(predict(polynomial.degree10.svm.fit) > 0, 1, 0),
Degree12SVM = ifelse(predict(polynomial.degree12.svm.fit) > 0,1, 0)))
predictions <- melt(df, id.vars = c('X', 'Y'))
ggplot(predictions, aes(x = X, y = Y, color = factor(value))) + geom_point() + facet_grid(variable ~ .)
#从图上看,degreee提升,准确率也提升,此时会有过拟合问题,因此,当使用多项式核函数时,要对degree进行交叉验证
#接下来研究一下SVM的cost参数
radial.cost1.svm.fit <- svm(Label ~ X + Y, data = df, kernel = 'radial', cost = 1)
with(df, mean(Label == ifelse(predict(radial.cost1.svm.fit) > 0, 1, 0)))
radial.cost2.svm.fit <- svm(Label ~ X + Y, data = df, kernel = 'radial', cost = 2)
with(df, mean(Label == ifelse(predict(radial.cost2.svm.fit) > 0, 1, 0)))
radial.cost3.svm.fit <- svm(Label ~ X + Y, data = df, kernel = 'radial', cost = 3)
with(df, mean(Label == ifelse(predict(radial.cost3.svm.fit) > 0, 1, 0)))
radial.cost4.svm.fit <- svm(Label ~ X + Y, data = df, kernel = 'radial', cost = 4)
with(df, mean(Label == ifelse(predict(radial.cost4.svm.fit) > 0, 1, 0)))
df <- df[, c('X', 'Y', 'Label')]
df <- cbind(df,
data.frame(Cost1SVM = ifelse(predict(radial.cost1.svm.fit) > 0, 1, 0),
Cost2SVM = ifelse(predict(radial.cost2.svm.fit) > 0, 1, 0),
Cost3SVM = ifelse(predict(radial.cost3.svm.fit) > 0, 1, 0),
Cost4SVM = ifelse(predict(radial.cost4.svm.fit) > 0, 1, 0)))
predictions <- melt(df, id.vars = c('X', 'Y'))
ggplot(predictions, aes(x = X, y = Y, color = factor(value))) + geom_point() + facet_grid(variable ~ .)
#如图,cost参数值提升使得效果越来越差,改变非常小,只能通过边缘数据察觉到效果越来越差
#再来看SVM的参数gamma
sigmoid.gamma1.svm.fit <- svm(Label ~ X + Y, data = df, kernel = 'sigmoid', gamma = 1)
with(df, mean(Label == ifelse(predict(sigmoid.gamma1.svm.fit) > 0, 1, 0)))
sigmoid.gamma2.svm.fit <- svm(Label ~ X + Y, data = df, kernel = 'sigmoid', gamma = 2)
with(df, mean(Label == ifelse(predict(sigmoid.gamma2.svm.fit) > 0, 1, 0)))
sigmoid.gamma3.svm.fit <- svm(Label ~ X + Y, data = df, kernel = 'sigmoid', gamma = 3)
with(df, mean(Label == ifelse(predict(sigmoid.gamma3.svm.fit) > 0, 1, 0)))
sigmoid.gamma4.svm.fit <- svm(Label ~ X + Y, data = df, kernel = 'sigmoid', gamma = 4)
with(df, mean(Label == ifelse(predict(sigmoid.gamma4.svm.fit) > 0, 1, 0)))
df <- df[, c('X', 'Y', 'Label')]
df <- cbind(df,
data.frame(Gamma1SVM = ifelse(predict(sigmoid.gamma1.svm.fit) > 0, 1, 0),
Gamma2SVM = ifelse(predict(sigmoid.gamma2.svm.fit) > 0, 1, 0),
Gamma3SVM = ifelse(predict(sigmoid.gamma3.svm.fit) > 0, 1, 0),
Gamma4SVM = ifelse(predict(sigmoid.gamma4.svm.fit) > 0, 1, 0)))
predictions <- melt(df, id.vars = c('X', 'Y'))
ggplot(predictions, aes(x = X, y = Y, color = factor(value))) + geom_point() + facet_grid(variable ~ .)
#变弯曲了
#SVM介绍完毕,意思就是碰到数据集要调参,下面比较一下SVM,glm和KNN的表现
load('G:\\dataguru\\ML_for_Hackers\\ML_for_Hackers-master\\12-Model_Comparison\\data\\dtm.RData')
set.seed(1)
#一半训练,一半测试
training.indices <- sort(sample(1:nrow(dtm), round(0.5 * nrow(dtm))))
test.indices <- which(! 1:nrow(dtm) %in% training.indices)
train.x <- dtm[training.indices, 3:ncol(dtm)]
train.y <- dtm[training.indices, 1]
test.x <- dtm[test.indices, 3:ncol(dtm)]
test.y <- dtm[test.indices, 1]
rm(dtm)
library('glmnet')
regularized.logit.fit <- glmnet(train.x, train.y, family = c('binomial'))
lambdas <- regularized.logit.fit$lambda
performance <- data.frame()
for (lambda in lambdas)
{
predictions <- predict(regularized.logit.fit, test.x, s = lambda)
predictions <- as.numeric(predictions > 0)
mse <- mean(predictions != test.y)
performance <- rbind(performance, data.frame(Lambda = lambda, MSE = mse))
}
ggplot(performance, aes(x = Lambda, y = MSE)) + geom_point() + scale_x_log10()
#有两个lambda对应的错误率是最小的,我们选了较大的那个,因为这意味着更强的正则化
best.lambda <- with(performance, max(Lambda[which(MSE == min(MSE))]))
#算一下mse,0.068
mse <- with(subset(performance, Lambda == best.lambda), MSE)
#下面试一下SVM
library('e1071')
#这一步时间很长,因为数据集大,进行线性核函数时间长
linear.svm.fit <- svm(train.x, train.y, kernel = 'linear')
predictions <- predict(linear.svm.fit, test.x)
predictions <- as.numeric(predictions > 0)
mse <- mean(predictions != test.y)
mse
#0.128,错误率12%,比glm还高.为了达到最优效果,应该尝试不同的cost超参数
radial.svm.fit <- svm(train.x, train.y, kernel = 'radial')
predictions <- predict(radial.svm.fit, test.x)
predictions <- as.numeric(predictions > 0)
mse <- mean(predictions != test.y)
mse
#错误率,0.1421538,比刚才还高,因此知道径向核函数效果不好,那么可能边界是线性的.所以glm效果才会比较好.
#下面试一下KNN,KNN对于非线性效果好
library('class')
knn.fit <- knn(train.x, test.x, train.y, k = 50)
predictions <- as.numeric(as.character(knn.fit))
mse <- mean(predictions != test.y)
mse
#错误率0.1396923,说明真的有可能是线性模型,下面试一下哪个K效果最好
performance <- data.frame()
for (k in seq(5, 50, by = 5))
{
knn.fit <- knn(train.x, test.x, train.y, k = k)
predictions <- as.numeric(as.character(knn.fit))
mse <- mean(predictions != test.y)
performance <- rbind(performance, data.frame(K = k, MSE = mse))
}
best.k <- with(performance, K[which(MSE == min(MSE))])
best.mse <- with(subset(performance, K == best.k), MSE)
best.mse
#错误率降到0.09169231,KNN效果介于glm和SVM之间
#因此,最优选择是glm
Machine Learning for hackers读书笔记(十二)模型比较的更多相关文章
- Machine Learning for hackers读书笔记(十)KNN:推荐系统
#一,自己写KNN df<-read.csv('G:\\dataguru\\ML_for_Hackers\\ML_for_Hackers-master\\10-Recommendations\\ ...
- Machine Learning for hackers读书笔记(五)回归模型:预测网页访问量
线性回归函数 model<-lm(Weight~Height,data=?) coef(model):得到回归直线的截距 predict(model):预测 residuals(model):残 ...
- Machine Learning for hackers读书笔记(二)数据分析
#均值:总和/长度 mean() #中位数:将数列排序,若个数为奇数,取排好序数列中间的值.若个数为偶数,取排好序数列中间两个数的平均值 median() #R语言中没有众数函数 #分位数 quant ...
- Machine Learning for hackers读书笔记(七)优化:密码破译
#凯撒密码:将每一个字母替换为字母表中下一位字母,比如a变成b. english.letters <- c('a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i' ...
- Machine Learning for hackers读书笔记(六)正则化:文本回归
data<-'F:\\learning\\ML_for_Hackers\\ML_for_Hackers-master\\06-Regularization\\data\\' ranks < ...
- Machine Learning for hackers读书笔记(三)分类:垃圾邮件过滤
#定义函数,打开每一个文件,找到空行,将空行后的文本返回为一个字符串向量,该向量只有一个元素,就是空行之后的所有文本拼接之后的字符串 #很多邮件都包含了非ASCII字符,因此设为latin1就可以读取 ...
- Machine Learning for hackers读书笔记_一句很重要的话
为了培养一个机器学习领域专家那样的直觉,最好的办法就是,对你遇到的每一个机器学习问题,把所有的算法试个遍,直到有一天,你凭直觉就知道某些算法行不通.
- Machine Learning for hackers读书笔记(九)MDS:可视化地研究参议员相似性
library('foreign') library('ggplot2') data.dir <- file.path('G:\\dataguru\\ML_for_Hackers\\ML_for ...
- Machine Learning for hackers读书笔记(八)PCA:构建股票市场指数
library('ggplot2') prices <- read.csv('G:\\dataguru\\ML_for_Hackers\\ML_for_Hackers-master\\08-PC ...
随机推荐
- AC 自动机在这里
HDU 3065,模板(备忘录) #include<stdio.h> #include<string.h> #include<math.h> #include< ...
- Unity Texture 2D Compress
测试了一下 unity 图片 对 apk 的影响. 上两种测试环境 1024 * 1024 带 alpha的话 默认压缩就是RBA 16bit就是2M 不带的话就是 etc 的话 ...
- Sqli-labs less 55
Less-55 本关的sql语句为: $sql="SELECT * FROM security.users WHERE id=($id) LIMIT 0,1"; 其余和less54 ...
- Subclasses
Given a collection of numbers, return all possible subclasses. public class Solution { public List&l ...
- HDU 2671 Can't be easier(数学题,点关于直线对称)
题目 //数学题//直线 y = k * x + b//直线 ax+by+c=0; 点 (x0,y0); 点到直线距离 d = (ax0+by0+c)/sqrt(a^2+b^2) /********* ...
- Cayley n顶点树数定理
出处:http://blog.csdn.net/gongqian12345/article/details/7445573 今天遇到一个问题:在一个n阶完全图的所有生成树的数量为n的n-2次方,想了好 ...
- iOS-xib(使用XIB实现嵌套自定义视图)
参考:http://wtlucky.github.io/geekerprobe/blog/2014/08/10/nested-xib-views/?utm_source=tuicool 因为主要练习x ...
- POJ 2127
#include <iostream> #define MAXN 501 using namespace std; int a[MAXN],b[MAXN],ans[MAXN]; int G ...
- 由CAST()函数在.NET1.1和.NET4.0下处理机制不同所引发的BUG
.NET 1.1版本下使用日期强制转换函数,比如:"select cast(ActionDate as char(7)) as ActionDate from ST_BookAction ...
- Android 注入详解
Android下的注入的效果是类似于Windows下的dll注入,关于Windows下面的注入可以参考这篇文章Windows注入术.而Android一般处理器是arm架构,内核是基于linux,因此进 ...