一、Implement Stack using Queues

Implement the following operations of a stack using queues.

  • push(x) -- Push element x onto stack.
  • pop() -- Removes the element on top of the stack.
  • top() -- Get the top element.
  • empty() -- Return whether the stack is empty.

Notes:

    • You must use only standard operations of a queue -- which means only push to backpeek/pop from frontsize, and is empty operations are valid.
    • Depending on your language, queue may not be supported natively. You may simulate a queue by using a list or deque (double-ended queue), as long as you use only standard operations of a queue.
    • You may assume that all operations are valid (for example, no pop or top operations will be called on an empty stack).

分析:用(两个)队列实现栈

设置两个队列分别为1和2

(1)入栈:如果队列2当前有元素,而队列1为空(反之亦然),那么将需要入栈的元素放入队列1中,然后将队列2中的元素依次出队并入队到队列1中。(即要保证有一个队列是空的)

(2)出栈:将有元素(不为空)的队列出队即可-------如:

先将元素a插入队列1中 ,现在要将元素b入栈,则将b插入到队列2中然后将队列1中的a出队到队列2中,则队列2中的元素变为 b,a

这样队列1为空,现在要压入c, 则将c插入队列1中 ,依次将队列2中的b ,a出队并加入到队列1中 ,则队列1中的元素变为 c,b,a,而队列2为空

(保证一队列为空)

代码如下:

【两个队列】

class Stack {
public:
// Push element x onto stack.
queue<int> queue1;
queue<int> queue2;
void push(int x) {
if (queue1.empty())
{
queue1.push(x);
while(!queue2.empty()){
int tmp = queue2.front();
queue2.pop();
queue1.push(tmp);
}
}else{
queue2.push(x);
while(!queue1.empty()){
int tmp = queue1.front();
queue1.pop();
queue2.push(tmp);
}
}
} // Removes the element on top of the stack.
void pop() {
if (!queue1.empty())
queue1.pop();
if (!queue2.empty())
queue2.pop();
} // Get the top element.
int top() {
if (!queue1.empty())
return queue1.front();
if (!queue2.empty())
return queue2.front();
} // Return whether the stack is empty.
bool empty() {
return queue1.empty() && queue2.empty();
}
};

 其他解法:

【两个队列】用两个队列myStack,temp实现一个栈。push时把新元素添加到myStack的队尾。pop时把myStack中除最后一个元素外逐个添加到myStack中,然后pop掉myStack中的最后一个元素,然后注意记得myStack和temp,以保证我们添加元素时始终向temp中添加。

class Stack {
public:
// Push element x onto stack.
void push(int x) {
myStack.push(x);
} // Removes the element on top of the stack.
void pop() {
std::queue<int> temp;
int len = myStack.size();
for(int i = 0; i < len - 1; i++) {
temp.push(myStack.front());
myStack.pop();
}
myStack = temp;
} // Get the top element.
int top() {
if(myStack.size() != 0) return myStack.back();
} // Return whether the stack is empty.
bool empty() {
if(myStack.size() == 0) return true;
else return false;
}
private:
std::queue<int> myStack;
};

  或:

【两个队列】

class Stack {
queue<int> rev_q;
public:
// Push element x onto stack.
void push(int x) {
queue<int> temp_q;
temp_q.push(x);
while (!rev_q.empty()) {
temp_q.push(rev_q.front());
rev_q.pop();
} rev_q = temp_q;
} // Removes the element on top of the stack.
void pop() {
rev_q.pop();
} // Get the top element.
int top() {
return rev_q.front();
} // Return whether the stack is empty.
bool empty() {
return rev_q.empty();
}
};

【一个队列】---push时直接添加到队尾就好。pop和top时,把队列除最后一个元素外,逐个循环添加到队列的尾部。

class Stack {
public:
// Push element x onto stack.
void push(int x) {
unsigned int size = s.size();
this->s.push(x);
while (size--){
s.push(s.front());
s.pop();
}
} // Removes the element on top of the stack.
void pop() {
s.pop();
} // Get the top element.
int top() {
return s.front();
} // Return whether the stack is empty.
bool empty() {
return s.empty();
}
private:
queue<int> s;
};

  

 附注:队列queue的成员函数

  • empty()判断队列空,当队列空时,返回true。
  • size()访问队列中的元素个数。
  • push()会将一个元素置入queue中。
  • front()会返回queue内的第一个元素(也就是第一个被置入的元素)。
  • back()会返回queue中最后一个元素(也就是最后被插入的元素)。
  • pop()会从queue中移除一个元素。[1] 
  • 注意:pop()虽然会移除下一个元素,但是并不返回它,front()和back()返回下一个元素但并不移除该元素。

 

二、Implement Queue using Stacks

Implement the following operations of a queue using stacks.

  • push(x) -- Push element x to the back of queue.
  • pop() -- Removes the element from in front of queue.
  • peek() -- Get the front element.
  • empty() -- Return whether the queue is empty.

Notes:

    • You must use only standard operations of a stack -- which means only push to toppeek/pop from topsize, and is empty operations are valid.
    • Depending on your language, stack may not be supported natively. You may simulate a stack by using a list or deque (double-ended queue), as long as you use only standard operations of a stack.
    • You may assume that all operations are valid (for example, no pop or peek operations will be called on an empty queue).

分析:

class Queue {
public:
stack<int> stack1;
stack<int> stack2;
// Push element x to the back of queue.
void push(int x) {
stack1.push(x);
} // Removes the element from in front of queue.
void pop(void) {
if(!stack2.empty()) stack2.pop();
else{
while(!stack1.empty()){
stack2.push(stack1.top());
stack1.pop();
}
stack2.pop();
}
} // Get the front element.
int peek(void) {
if(!stack2.empty()) return stack2.top();
else{
while(!stack1.empty()){
stack2.push(stack1.top());
stack1.pop();
}
return stack2.top();
}
} // Return whether the queue is empty.
bool empty(void) {
return stack1.empty() && stack2.empty();
}
};

注:stack2.push(stack1.top())中若写成 stack2.push(stack1.pop())则会出错:invalid use of void expression 

 

或:

class Queue {
public:
stack<int> s1;
stack<int> s2;
// Push element x to the back of queue.
void push(int x) {
s1.push(x); } // Removes the element from in front of queue.
void pop(void) {
if(s1.empty())
return;
while(!s1.empty()) {
s2.push(s1.top());
s1.pop();
}
s2.pop();
while(!s2.empty()) {
s1.push(s2.top());
s2.pop();
}
} // Get the front element.
int peek(void) {
if(s1.empty())
return -1;
while(!s1.empty()) {
s2.push(s1.top());
s1.pop();
}
int t = s2.top();
while(!s2.empty()) {
s1.push(s2.top());
s2.pop();
}
return t;
} // Return whether the queue is empty.
bool empty(void) {
return s1.empty();
}
};

 可参考其他解法:

我们做过一道相反的题目Implement Stack using Queues 用队列来实现栈。这道题颠倒了个顺序,起始并没有太大的区别,栈和队列的核心不同点就是栈是先进后出,而队列是先进先出,那么怎么用栈的先进后出的特性来表示出队列的先进先出呢?方法是:只要在插入元素的时候每次都从前面插入即可,即如果一个队列是1,2,3,4,那么就在栈中保存为4,3,2,1,那么返回栈顶元素1,即为队列的首元素。我们可以设置一个辅助栈tmp,把s的元素也逆着顺序存入tmp中,此时若加入新元素x,再把tmp中的元素倒回来。

代码如下:

class Queue {
public:
// Push element x to the back of queue.
void push(int x) {
stack<int> tmp;
while (!s.empty()) {
tmp.push(s.top());
s.pop();
}
s.push(x);
while (!tmp.empty()) {
s.push(tmp.top());
tmp.pop();
}
} // Removes the element from in front of queue.
void pop(void) {
s.pop();
} // Get the front element.
int peek(void) {
return s.top();
} // Return whether the queue is empty.
bool empty(void) {
return s.empty();
} private:
stack<int> s;
};

  

 

 

leetcode:Implement Stack using Queues 与 Implement Queue using Stacks的更多相关文章

  1. 225. Implement Stack using Queues + 232. Implement Queue using Stacks

    ▶ 栈和队列的相互表示.发现内置的队列和栈结构都十分高效,相互表示后性能损失都很小. ▶ 第 225 题,用队列实现栈 ● 自己的代码,3 ms,单队列实现,入栈 O(1),读取栈顶元素 O(n),出 ...

  2. 【LeetCode】232 & 225 - Implement Queue using Stacks & Implement Stack using Queues

    232 - Implement Queue using Stacks Implement the following operations of a queue using stacks. push( ...

  3. leetcode 155. Min Stack 、232. Implement Queue using Stacks 、225. Implement Stack using Queues

    155. Min Stack class MinStack { public: /** initialize your data structure here. */ MinStack() { } v ...

  4. 232. Implement Queue using Stacks,225. Implement Stack using Queues

    232. Implement Queue using Stacks Total Accepted: 27024 Total Submissions: 79793 Difficulty: Easy Im ...

  5. Implement Queue by Two Stacks & Implement Stack using Queues

    Implement Queue by Two Stacks Implement the following operations of a queue using stacks. push(x) -- ...

  6. [LeetCode] Implement Stack using Queues 用队列来实现栈

    Implement the following operations of a stack using queues. push(x) -- Push element x onto stack. po ...

  7. 【一天一道LeetCode】#225. Implement Stack using Queues

    一天一道LeetCode 本系列文章已全部上传至我的github,地址:ZeeCoder's Github 欢迎大家关注我的新浪微博,我的新浪微博 欢迎转载,转载请注明出处 (一)题目 Impleme ...

  8. LeetCode 225 Implement Stack using Queues(用队列来实现栈)(*)

    翻译 用队列来实现栈的例如以下操作. push(x) -- 将元素x加入进栈 pop() -- 从栈顶移除元素 top() -- 返回栈顶元素 empty() -- 返回栈是否为空 注意: 你必须使用 ...

  9. [LeetCode] 225. Implement Stack using Queues 用队列来实现栈

    Implement the following operations of a stack using queues. push(x) -- Push element x onto stack. po ...

随机推荐

  1. 【BZOJ】【1087】【SCOI2005】互不侵犯King

    状压DP 我写的太水了……64ms才过,估计还有更好的做法,希望各位神犇不吝赐教>_<. 嗯这题很明显每一行都可以用一个2进制数表示放置方式的,(1表示放,0表示不放).然后预处理一下所有 ...

  2. thinkphp中SQLSTATE[42S02]: Base table or view not found: 1146 Table错误解决方法

    随手记录下今天在thinkphp3.2.3中遇到的错误SQLSTATE[42S02]: Base table or view not found: 1146 Table 'test.file_info ...

  3. 树链剖分 - BZOJ 1036: [ZJOI2008]树的统计Count

    这是树链剖分的入门题,也是我学树链剖分的第一题. 树链剖分:就是把树中和线段树联系起来,求(u,v)路径中权值的最大值和其路径的权值和. 入门blog:http://blog.sina.com.cn/ ...

  4. 如何在Asp.net中备份Access数据库?

    public   void   Create(   string   mdbPath   ) { if(   File.Exists(mdbPath)   )   //检查数据库是否已存在 { thr ...

  5. associated 2 maps

    <!DOCTYPE html><html> <head> <meta http-equiv="Content-Type" content= ...

  6. POJ 1548 Robots (Dilworth)

    Robots Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 3621 Accepted: 1643 Description Yo ...

  7. Chapter 6面向对象

    1.Python中预定义的函数在定义的时候有一种很特别的形式,即是函数名是小写,并且函数名前后分别有两个下划线.同样的,在对象中也有预定义的方法,例如所有对象的基类object中的__new__(), ...

  8. HDU 1421 搬寝室

    搬寝室 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submiss ...

  9. [C++]内存字节对齐

    当我们写一个class类,然后sizeof(),然后发现这个值往往比你想象的大,这是为什么呢?这里就要讲到内存对齐的问题. 先来看一下内存对齐的几条原则: 1.对于class(struct/union ...

  10. SQL技术内幕-10 in和exists 性能比较

    in和exists in 是把外表和内表作hash 连接,而exists是对外表作loop循环,每次loop循环再对内表进行查询. 一直以来认为exists比in效率高的说法是不准确的. 如果查询的两 ...