链接

2986是3675的简化版,只有一个三角形。

这题主要在于求剖分后三角形与圆的相交面积,需要分情况讨论。

具体可以看此博客 http://hi.baidu.com/billdu/item/703ad4e15d819db52f140b0b

在分析第3、4两种情况时,我是用角度来进行判断的,如果<obc||<ocb大于90度就为他所说的第四种情况,不然就是第三种情况。

还有对于sig的解释貌似网上都没写,可能都觉得太简单了。。。自己手画了一下,大体是这个样子的

红色标记那块三角形是需要减掉对于当前多边形,可以看出以最下角进行剖分三角形时,cross(b,c)算的那块小三角形的确是负的,所以需要判断一下当前的面积是要加上的还是要减掉的。

讨论的东西比较多,细节比较多,WA了好多遍,对着数据查了好久终于过了。。

附上一些数据

 #include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stdlib.h>
#include<vector>
#include<cmath>
#include<queue>
#include<set>
using namespace std;
#define N 100
#define LL long long
#define INF 0xfffffff
const double eps = 1e-;
const double pi = acos(-1.0);
const double inf = ~0u>>;
struct point
{
double x,y;
point(double x=,double y=):x(x),y(y) {}
} p[N];
struct tri
{
point a,b,c;
} tr[N];
typedef point pointt;
point operator -(point a,point b)
{
return point(a.x-b.x,a.y-b.y);
}
point operator *(point a,double r)
{
return point(a.x*r,a.y*r);
}
point operator +(point a,point b)
{
return point(a.x+b.x,a.y+b.y);
}
struct line
{
point u,v;
point ppoint(double t)
{
return point(u+v*t);
}
};
struct circle
{
point c;
double r;
circle(point c,double r):c(c),r(r) {}
point ppoint(double a)
{
return point(c.x+cos(a)*r,c.y+sin(a)*r);
}
};
double r;
point ip;
double dcmp(double x)
{
if(fabs(x)<eps) return ;
return x<?-:;
}
double dis(point a)
{
return sqrt(a.x*a.x+a.y*a.y);
}
double dot(point a,point b)
{
return a.x*b.x+a.y*b.y;
}
double cross(point a,point b)
{
return a.x*b.y-a.y*b.x;
}
double area(point a,point b,point c)
{
return fabs(cross(a-c,b-c))/;
} int getlinecircle(line ll,circle cc,point &p1,point &p2)
{
double a = ll.v.x,b = ll.u.x-cc.c.x,c = ll.v.y,d = ll.u.y-cc.c.y;
double e = a*a+c*c,f = *(a*b+c*d),g = b*b+d*d-cc.r*cc.r;
double delta = f*f-*e*g;
double t1,t2;
if(dcmp(delta)<)return ;//ÏàÀë
if(dcmp(delta)==)
{
t1 = t2 = -f/(*e);//cout<<t1<<" -"<<e<<" "<<f<<endl;
p1 = ll.ppoint(t1);
return ;//ÏàÇÐ
}
//Ïཻ
t1 = (-f-sqrt(delta))/(*e);
p1 = ll.ppoint(t1);
t2 = (-f+sqrt(delta))/(*e);
p2 = ll.ppoint(t2);
// cout<<p1.x<<" "<<p1.y<<" "<<p2.x<<" "<<p2.y<<endl;
return ;
}
double mul(point a,point b,point c)
{
return cross(b-a,c-a);
}
bool cmp(point a,point b)
{
if(dcmp(mul(ip,a,b))==)
return dis(a-ip)<dis(b-ip);
else
return dcmp(mul(ip,a,b))>;
}
double distancetoline(point p,point a,point b)
{
point v1 = a-b,v2 = p-b;
return fabs(cross(v1,v2))/dis(v1);
}
int dot_online_in(point p,point l1,point l2)
{
return !dcmp(mul(p,l1,l2))&&(l1.x-p.x)*(l2.x-p.x)<eps&&(l1.y-p.y)*(l2.y-p.y)<eps;
}
double angle(point a,point b)
{
return acos(dot(a,b)/dis(a)/dis(b));
}
double cal(tri tr)
{
circle cp=circle(point(,),r);
int sig = dcmp(cross(tr.b,tr.c));
if(sig==) return ;
double d1 = dis(tr.a-tr.b),d2 = dis(tr.a-tr.c);
if(dcmp(d1-r)<=&&dcmp(d2-r)<=)
{
double s = sig*area(tr.a,tr.b,tr.c);
return s;
}
double dline = distancetoline(cp.c,tr.b,tr.c);
if(dcmp(d1-r)>=&&dcmp(d2-r)>=&&dcmp(dline-r)>=)
{
return sig*angle(tr.b,tr.c)*r*r/2.0;
}
double ag = angle(tr.c-tr.b,tr.a-tr.b),bg = angle(tr.b-tr.c,tr.a-tr.c);
point p1,p2;
line l1;
l1.u = tr.b,l1.v = tr.c-tr.b;
getlinecircle(l1,cp,p1,p2); if(dcmp(d1-r)>=&&dcmp(d2-r)>=&&dcmp(dline-r)<&&(dcmp(ag-pi/)>=||dcmp(bg-pi/)>=))
{ double s = sig*angle(tr.b,tr.c)*r*r/;
return s;
}
if(dcmp(d1-r)>=&&dcmp(d2-r)>=&&dcmp(dline-r)<)
{
double s = (angle(tr.b,tr.c)-angle(p1,p2))*r*r/2.0+area(tr.a,p1,p2);
return sig*s;
} p1 = dot_online_in(p1,tr.b,tr.c)?p1:p2;
if(dcmp(d1-r)<)
{
return sig*(angle(tr.c,p1)*r*r/+area(tr.a,p1,tr.b));
}
else
{
return sig*(angle(p1,tr.b)*r*r/+area(tr.a,p1,tr.c));
}
}
int dots_inline(point p1,point p2,point p3)
{
return !dcmp(mul(p1,p2,p3));
}
int main()
{
int i,n;
while(scanf("%lf",&r)!=EOF)
{
scanf("%d",&n);
for(i = ; i < n ; i++)
{
scanf("%lf%lf",&p[i].x,&p[i].y);
}
p[n] = p[];
double ans = ;
for(i = ; i < n ; i++)
{
if(dots_inline(ip,p[i],p[i+])) continue;
tr[i].a = point(,);
tr[i].b = p[i];
tr[i].c = p[i+];
ans+=cal(tr[i]);
}
printf("%.2f\n",fabs(ans)+eps);
}
return ;
}

589.00 191.00 -554.00 710.00 748.00 774.00 -888.00 -588.00 902.00

201.00 -847.00 -365.00 886.00 -557.00 -609.00 272.00 -345.00 189.00

-358.00 981.00 269.00 511.00 158.00 -304.00 468.00 463.00 834.00

969.00 514.00 -445.00 460.00 -177.00 774.00 -34.00 -125.00 162.00

-467.00 413.00 -714.00 -986.00 362.00 666.00 813.00 271.00 264.00

-497.00 908.00 -414.00 631.00 -220.00 868.00 166.00 -258.00 306.00

-107.00 -743.00 -952.00 322.00 -273.00 -214.00 -14.00 466.00 758.00

511.00 -416.00 -934.00 -745.00 -335.00 -132.00 -482.00 391.00 626.00

928.00 821.00 -293.00 -853.00 -488.00 -312.00 -27.00 94.00 361.00

-979.00 -280.00 791.00 -943.00 -300.00 -278.00 -821.00 684.00 365.00

-700.00 955.00 -315.00 154.00 -103.00 -606.00 404.00 -792.00 940.00

607.00 783.00 597.00 944.00 -672.00 -323.00 343.00 -799.00 526.00

815.00 -390.00 -291.00 37.00 422.00 687.00 672.00 613.00 848.00

-988.00 363.00 -529.00 660.00 -597.00 143.00 502.00 459.00 522.00

-206.00 484.00 109.00 -111.00 424.00 650.00 330.00 -545.00 480.00

94.00 -638.00 -59.00 -9.00 -400.00 -702.00 0.00 267.00 741.00

-859.00 522.00 109.00 -640.00 383.00 712.00 489.00 -663.00 635.00

808.00 -31.00 471.00 172.00 -374.00 21.00 120.00 -860.00 474.00

-539.00 -887.00 498.00 844.00 -453.00 -213.00 -479.00 -9.00 315.00

答案

Case 1
0.00
Case 2
0.00
Case 3
274955.27
Case 4
0.00
Case 5
0.00
Case 6
0.00
Case 7
25157.17
Case 8
9943.87
Case 9
181113.99
Case 10
0.00
Case 11
11846.16
Case 12
0.00
Case 13
404668.37
Case 14
0.00
Case 15
0.00
Case 16
74663.53
Case 17
80015.79
Case 18
0.00
Case 19
57316.85
Case 20
0.00

poj2986A Triangle and a Circle&&poj3675Telescope(三角形剖分)的更多相关文章

  1. POJ 2986 A Triangle and a Circle(三角形和圆形求交)

    Description Given one triangle and one circle in the plane. Your task is to calculate the common are ...

  2. POJ 2986 A Triangle and a Circle 圆与三角形的公共面积

    计算几何模板 #include<stdio.h> #include<string.h> #include<stdlib.h> #include<math.h& ...

  3. POJ 2986 A Triangle and a Circle

    题意:给定一个三角形,以及一个圆的圆心坐标和半径,求圆和三角形的相交面积. 思路: 用三角剖分,三角形上每个线段都变成这个线段与圆心的三角形,然后算出每个三角形与圆的相交面积,然后根据有向面积的正负累 ...

  4. ACM计算几何题目推荐

    //第一期 计算几何题的特点与做题要领: 1.大部分不会很难,少部分题目思路很巧妙 2.做计算几何题目,模板很重要,模板必须高度可靠. 3.要注意代码的组织,因为计算几何的题目很容易上两百行代码,里面 ...

  5. PHP面向对象实例(图形计算器)

    效果:

  6. 对C++虚函数、虚函数表的简单理解

    一.虚函数的作用 以一个通用的图形类来了解虚函数的定义,代码如下: #include "stdafx.h" #include <iostream> using name ...

  7. UVa 11524:In-Circle(解析几何)

    Problem EIn-CircleInput: Standard Input Output: Standard Output In-circle of a triangle is the circl ...

  8. zoj 1010 (线段相交判断+多边形求面积)

    链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=10 Area Time Limit: 2 Seconds      Mem ...

  9. S1:new操作符

    function Shape(type){ this.type = type || "rect"; this.calc = function(){ return "cal ...

随机推荐

  1. JavaEE基础(二十五)/多线程、GUI

    1.多线程(单例设计模式) 单例设计模式:保证类在内存中只有一个对象. 如何保证类在内存中只有一个对象呢? (1)控制类的创建,不让其他类来创建本类的对象.private (2)在本类中定义一个本类的 ...

  2. Mootools插件-闪烁的标题

    转自:http://www.cnblogs.com/see7di/archive/2012/10/09/2716024.html 回想起来,我已经好久没有写点啥了,尤其是关于Mootools方面的东西 ...

  3. C#:序列化值与解码二进制

    1.将对象序列化为二进制值,供WebBrowser传值: private static byte[] PostDataToBytes(Data postData) { JavaScriptSerial ...

  4. 20150601_Andriod 打开新窗体

    <?xml version="1.0" encoding="utf-8"?><manifest xmlns:android="htt ...

  5. Is It A Tree?(并查集)

    Is It A Tree? Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 26002   Accepted: 8879 De ...

  6. 实现gabor filter的滤波

    实现gabor filter的滤波       图像纹理对于航空遥感图片.织物图案.复杂自然风景和动植物都适合.这里我采用遥感图片.织物图案和钢铁表面来做,并和canny图片进行一定的对比.     ...

  7. 递归,动态规划,找最短路径,Help Jimmy

    题目链接:http://poj.org/problem?id=1661 解题报告: 1.老鼠每次来到一块木板上都只有两条路可以走,可以使用递归 #include <stdio.h> #in ...

  8. uwsgi安装过程中遇到的问题

    参考这篇文章: [root@crz_oa webserver]# uwsgi --http :9090 --wsgi-file home.py --daemonize /var/log/uwsgi.l ...

  9. github for windows回滚到某一个版本,

    建议先学会使用git命令再学GUI版的git,git本来就是命令行程序,GUI本质就是执行一些命令.仅从一些icon和单词去理解一些操作难免会有偏差.而反过来,熟悉命令会更好地理解GUI操作.想要回滚 ...

  10. HTTP 错误 404.2 - Not Found

    前几天刚安装Windows Server 2008 r2 sp1 遇到问题之后,昨天我又遇到一个问题(但我不害怕有问题),提示: HTTP 错误 404.2 - Not Found由于 Web 服务器 ...