hdu 1053 Entropy
题目连接
http://acm.hdu.edu.cn/showproblem.php?pid=1053
Entropy
Description
An entropy encoder is a data encoding method that achieves lossless data compression by encoding a message with “wasted” or “extra” information removed. In other words, entropy encoding removes information that was not necessary in the first place to accurately encode the message. A high degree of entropy implies a message with a great deal of wasted information; english text encoded in ASCII is an example of a message type that has very high entropy. Already compressed messages, such as JPEG graphics or ZIP archives, have very little entropy and do not benefit from further attempts at entropy encoding.
English text encoded in ASCII has a high degree of entropy because all characters are encoded using the same number of bits, eight. It is a known fact that the letters E, L, N, R, S and T occur at a considerably higher frequency than do most other letters in english text. If a way could be found to encode just these letters with four bits, then the new encoding would be smaller, would contain all the original information, and would have less entropy. ASCII uses a fixed number of bits for a reason, however: it’s easy, since one is always dealing with a fixed number of bits to represent each possible glyph or character. How would an encoding scheme that used four bits for the above letters be able to distinguish between the four-bit codes and eight-bit codes? This seemingly difficult problem is solved using what is known as a “prefix-free variable-length” encoding.
In such an encoding, any number of bits can be used to represent any glyph, and glyphs not present in the message are simply not encoded. However, in order to be able to recover the information, no bit pattern that encodes a glyph is allowed to be the prefix of any other encoding bit pattern. This allows the encoded bitstream to be read bit by bit, and whenever a set of bits is encountered that represents a glyph, that glyph can be decoded. If the prefix-free constraint was not enforced, then such a decoding would be impossible.
Consider the text “AAAAABCD”. Using ASCII, encoding this would require 64 bits. If, instead, we encode “A” with the bit pattern “00”, “B” with “01”, “C” with “10”, and “D” with “11” then we can encode this text in only 16 bits; the resulting bit pattern would be “0000000000011011”. This is still a fixed-length encoding, however; we’re using two bits per glyph instead of eight. Since the glyph “A” occurs with greater frequency, could we do better by encoding it with fewer bits? In fact we can, but in order to maintain a prefix-free encoding, some of the other bit patterns will become longer than two bits. An optimal encoding is to encode “A” with “0”, “B” with “10”, “C” with “110”, and “D” with “111”. (This is clearly not the only optimal encoding, as it is obvious that the encodings for B, C and D could be interchanged freely for any given encoding without increasing the size of the final encoded message.) Using this encoding, the message encodes in only 13 bits to “0000010110111”, a compression ratio of 4.9 to 1 (that is, each bit in the final encoded message represents as much information as did 4.9 bits in the original encoding). Read through this bit pattern from left to right and you’ll see that the prefix-free encoding makes it simple to decode this into the original text even though the codes have varying bit lengths.
As a second example, consider the text “THE CAT IN THE HAT”. In this text, the letter “T” and the space character both occur with the highest frequency, so they will clearly have the shortest encoding bit patterns in an optimal encoding. The letters “C”, “I’ and “N” only occur once, however, so they will have the longest codes.
There are many possible sets of prefix-free variable-length bit patterns that would yield the optimal encoding, that is, that would allow the text to be encoded in the fewest number of bits. One such optimal encoding is to encode spaces with “00”, “A” with “100”, “C” with “1110”, “E” with “1111”, “H” with “110”, “I” with “1010”, “N” with “1011” and “T” with “01”. The optimal encoding therefore requires only 51 bits compared to the 144 that would be necessary to encode the message with 8-bit ASCII encoding, a compression ratio of 2.8 to 1.
Input
The input file will contain a list of text strings, one per line. The text strings will consist only of uppercase alphanumeric characters and underscores (which are used in place of spaces). The end of the input will be signalled by a line containing only the word “END” as the text string. This line should not be processed.
Output
For each text string in the input, output the length in bits of the 8-bit ASCII encoding, the length in bits of an optimal prefix-free variable-length encoding, and the compression ratio accurate to one decimal point.
Sample Input
AAAAABCD
THE_CAT_IN_THE_HAT
END
Sample Output
64 13 4.9
144 51 2.8
哈弗曼编码。。
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<string>
#include<queue>
#include<set>
using std::set;
using std::sort;
using std::swap;
using std::string;
using std::priority_queue;
#define pb(e) push_back(e)
#define sz(c) (int)(c).size()
#define mp(a, b) make_pair(a, b)
#define all(c) (c).begin(), (c).end()
#define iter(c) decltype((c).begin())
#define cls(arr, val) memset(arr, val, sizeof(arr))
#define cpresent(c, e) (find(all(c), (e)) != (c).end())
#define rep(i, n) for(int i = 0; i < (int)n; i++)
#define tr(c, i) for(iter(c) i = (c).begin(); i != (c).end(); ++i)
const int N = 30;
const int INF = 0x3f3f3f3f;
typedef unsigned long long ull;
char buf[11000];
struct Node {
char dat;
int w;
Node *ch[2];
Node(char _dat_, int _w_, Node *l = NULL, Node *r = NULL) {
dat = _dat_, w = _w_;
ch[0] = l, ch[1] = r;
}
Node(const Node &x) {
dat = x.dat, w = x.w;
ch[0] = x.ch[0], ch[1] = x.ch[1];
}
inline bool operator<(const Node &x) const {
return w > x.w;
}
};
struct Hoffmancode {
int sum;
Node *root;
priority_queue<Node> q;
inline char to_lower(char ch) {
return ch >= 'A' && ch <= 'Z' ? ch + 32 : ch;
}
inline void CreateHoffmanTree() {
Node *l = NULL, *r = NULL;
while (!q.empty() && q.size() != 1) {
l = new Node(q.top()); q.pop();
r = new Node(q.top()); q.pop();
Node ret(0, l->w + r->w, l, r);
q.push(ret);
}
if (!q.empty()) {
root = new Node(q.top()); q.pop();
}
}
inline void CreateHoffmanCode(Node *x, string str) {
if (!x) return;
if (x->dat != 0) {
sum += (str.length() * x->w);
}
CreateHoffmanCode(x->ch[0], str + "0");
CreateHoffmanCode(x->ch[1], str + "1");
}
inline void solve() {
sum = 0, root = NULL;
int arr[N] = { 0 }, tot = 0, n = strlen(buf);
while (!q.empty()) q.pop();
for (int i = 0; i < n; i++) {
arr[to_lower(buf[i]) - '_']++;
}
for (int i = 0; i < 28; i++) {
if (arr[i]) {
tot++;
Node ret('_' + i, arr[i]);
q.push(ret);
}
}
if (1 == tot) {
printf("%d %d 8.0\n", n * 8, n);
return;
}
CreateHoffmanTree();
CreateHoffmanCode(root, "");
printf("%d %d %.1lf\n", n * 8, sum, (double)(n * 8) / sum);
}
}work;
int main() {
#ifdef LOCAL
freopen("in.txt", "r", stdin);
freopen("out.txt", "w+", stdout);
#endif
while (~scanf("%s", buf) && 0 != strcmp(buf, "END")) {
work.solve();
}
return 0;
}
hdu 1053 Entropy的更多相关文章
- HDU 1053 Entropy(哈夫曼编码 贪心+优先队列)
传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1053 Entropy Time Limit: 2000/1000 MS (Java/Others) ...
- hdu 1053 Entropy (哈夫曼树)
Entropy Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Sub ...
- HDU 1053 & HDU 2527 哈夫曼编码
http://acm.hdu.edu.cn/showproblem.php?pid=1053 #include <iostream> #include <cstdio> #in ...
- hdoj 1053 Entropy(用哈夫曼编码)优先队列
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1053 讲解: 题意:给定一个字符串,根据哈夫曼编码求出最短长度,并求出比值. 思路:就是哈夫曼编码.把 ...
- hdu 1053 (huffman coding, greedy algorithm, std::partition, std::priority_queue ) 分类: hdoj 2015-06-18 19:11 22人阅读 评论(0) 收藏
huffman coding, greedy algorithm. std::priority_queue, std::partition, when i use the three commente ...
- 【HDOJ】1053 Entropy
构造huffman编码,果断对字符进行状态压缩. #include <iostream> #include <cstdio> #include <cstring> ...
- HDU题解索引
HDU 1000 A + B Problem I/O HDU 1001 Sum Problem 数学 HDU 1002 A + B Problem II 高精度加法 HDU 1003 Maxsu ...
- CSU-ACM2018暑期训练7-贪心
A:合并果子(贪心+优先队列) B:HDU 1789 Doing Homework again(非常经典的贪心) C:11572 - Unique Snowflakes(贪心,两指针滑动保存子段最大长 ...
- hdu 2527 Safe Or Unsafe (哈夫曼树)
Safe Or Unsafe Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
随机推荐
- Git 图解剖析
git中文件内容并没有真正存储在索引(.git/index)或者提交对象中,而是以blob的形式分别存储在数据库中(.git/objects),并用SHA-1值来校验. 索引文件用识别码列出相关的bl ...
- json 對象的序列化
var a={x:1,y:2} s=JSON.stringify(a); //s="{"x":1,"y":2}" p=JSON.parse( ...
- 多行文字垂直居中(完美兼容chrome firefox IE6 7 8 9)
在说到这个问题的时候,也许有人会问CSS中不是有vertical-align属性来设置垂直居中的吗?即使是某些浏览器不支持我只需做少许的CSS Hack技术就可以啊!所以在这里我还要啰嗦两句,CSS中 ...
- poj1005 I Think I Need a Houseboat
这题目只要读懂了意思就好做了,先求出来(0.0)到(x.y)的距离为r,然后求出来以r为半径的半圆的面积,然后再用这个面积除以50,再向上取整就可以啦. #include <stdio.h> ...
- Android IOS WebRTC 音视频开发总结(四七)-- 深度解读国内首届WebRTC大会背后的真相
本文主要解读国内首届WebRTC大会背后的真相,文章来自博客园RTC.Blacker,支持原创,转载必须说明出处,更多详见www.rtc.help -------------------------- ...
- js随机生成字母数字组合的字符串 随机动画数字
效果描述: 附件中只有一个index.html文件有效 其中包含css以及html两部分内容 纯js生成的几个随机数字 每次都不重复,点击按钮后再次切换 使用方法: 1.将css样式引入到你的网页中 ...
- POJ C程序设计进阶 编程题#1:分配病房
编程题#1:分配病房 来源: POJ (Coursera声明:在POJ上完成的习题将不会计入Coursera的最后成绩.) 注意: 总时间限制: 1000ms 内存限制: 65536kB 描述 某个科 ...
- Pass Dynamic Value to a Grid Label
A grid label is the blue (normally) colored grid header that you see on PeopleSoft pages. The grid ...
- SQL SERVER中查询参数为空(null)时默认查询所有的实现
最近在项目中碰到一个比较有意思的问题,网上查找了一些方法,在这里总结分享一下. 我们经常会碰到这样的场景:需要查询数据,有一些查询条件,但是查询的时候,我们希望在某个条件为空的时候,则不筛选这个条件, ...
- 【转】一个高端.NET技术人才的2014年度总结
[转]一个高端.NET技术人才的2014年度总结 本人在一家公司做技术负责人.主要从事的是.net方面的开发与管理,偏重开发. 弹指一挥间,时间飘然而过,转眼又是一年. 回顾2014年,是我人生中最 ...