C++中的矩阵运算
C++中的矩阵运算
1. 2阶矩阵的逆矩阵公式
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAkYAAAEKCAIAAAB4zQ2xAAAgAElEQVR4nO3dv2vk6B3H8fknUhmTUUCQ9hgYxyDCFVlwGRUutjtQs8XBwiBwuY1VuVgwgu0jSAoTg4tsYJuBg6087KQxx7g2SpnCRcpJ8XCKTj++eubRWNbzzPtThdzsy5pn9MxnpEejmWw18vT0pPMwlcfHR/0HIyMjIyMj70uevO6fR0ZGRkZG3pdMpSEjIyMjOyJTacjIyMjIjshUGjIyMjKyIzKVhoyMjIzsiEylISMjIyM7IlNpyMjIyMiOyFQaMvIe5J9//vnTp0+LxeLjx4/r9XqPsopdo4GM3JaXnilUGjJyX/nDhw+TX+eHH374z3/+018uYtFoICO3ZYCZQqUhI/eS67NU5ezsrKdcji2jgYzclmFmCpWGjGwur9frxlmq8re//c1YrsSK0UBGbstgM4VKQ0Y2lz9+/ChM1B9++MFYrsSK0UBGbstgM2XyqJH1eq3zMJX7+3v9ByMjWy3/6U9/Eibq7373O2O5EitGAxm5LYPNFI7SkJHN5e+//16YqNPp1FiuxIrRQEZuy2AzhUpDRjaXqTRkZB2ZSkNGtkCm0pCRdWQqDRnZAplKQ0bWkak0ZGQLZCoNGVlHptKQkS2QqTRkZB2ZSkNGtkCm0pCRdWQqDRnZAplKQ0bWkak0ZGQLZCoNGVlHptKQkS2QqTRkzWw2mxeSrRgNKg0Z2QKZSkPuzN3dXRAEFxcXe5dVrBgNKg0Z2QKZSkMWslwuwzBUOwOVRqUhI49dptKQG1MuMyptS6UhI1shU2mHLH/48CGpJYoi3/frOwOVNlClPWnk4eFB52Eq6/Va/8HIyFbLp6enwkQ9Pj42liuxYjQOTf7uu++EV7+S9+/fj2GbnZ8pHKUhI5vLHKUdsjybzfQrjaO0YWYKlYaMbC5TaYcsU2n6MpWGjGyBTKUdskyl6ctUGjKyBTKVdshy5fKQKIqotLZQacjIFshUGnI5cRxTaY2h0pCRLZCpNORykiSh0hpDpSEjWyBTacjlUGltodKQkS2QqTTkcqi0tlBpyMgWyFQacjlUWluoNGRkC2QqDbkcKq0tVBoysgUylYZcDpXWFioNGdkCmUpDLodKawuVhoxsgUylIZdDpbWFSkNGtkCm0pDLodLaMlylPWpkvV7rPEzl/v5e/8HIyFbLJycnwkQ9OjoyliuxYjSQF4tF287w448/9pGFjHY0yhlspnCUhoxsLnOUhlwOR2lt4cQjMrIFMpWGXA6V1hYqDRnZAplKQy6HSmsLlYaMbIFMpSGXQ6W1hUpDRrZAptKQy6HS2kKlISNbIFNpyOVQaW2h0pCRLZCpNORyqLS2UGnIyBbIVBpyOVRaW6g0ZGQLZCoNuRwqrS1UGjKyBfLBVtpms0nTNI7jIAiCIPCbMp/PgyBIkiTLsjzPX32bB5CNK22z2SRJUozkdDothjEIgjiOsyx7oW0WYuNModKQkc3lQ6u0q6urMAx93xeedWPUu3OSJG3dZuNo7KXS0jQNgkBzDMMwXC6X+91mITbOFCoNGdlcPpxKS5LEoMka35ejKKoXm12j0SbvVGnGQ1opttGORjlUGjKyBfIhVNq+yqwc3/crZ9JsGQ1Z1qy05XKpeWQmJEmSvWyzEBtnCpWGjGwuu11pm81G5523cSFNpwWjKNr7NtcztkoTHrNr1ACOdjTKGa7SnjTy8PCg8zCV9Xqt/2BkZKvl09NTYaIeHx8by5UMPxrX19ee57U9Nc/z3r17d3Nz8/nz5zb5H//4x+Xl5dnZmTBE79692+M2N2ZI+eLiou2Zvn///unp6e3bt8JoeJ43n8/n8/l33303n8+F8S/y9u3b0Y5GOYPNFI7SkJHNZVeP0oQjiSAI6lcoyPJyuRQO2pQ25tHQl+WjtLu7u8b/5Pt+HMer1aouZ1nWeaB8eXnZZ5uF2DhTqDRkZHPZyUrLsqztGZ2fn5vJq9WqrdWCIOi/zUJGUmnv3r2rj4C6CrRTls9Vep632WyMt1mIjTOFSkNGNpfdq7Q8z4Xu6SNHUdQ2UFmWjXM0dpWF7qmfgA2CQP8rDcLnjMlkEoah8TYLsXGmUGnIyOaye5UmFE+apn3kzWYjvCOPczR2lfUv/VDHpjtts/DSTCYT4bvYnXJbbJwpVBoysrnsXqUJi149K03Afd8f52jsKmtWmtxnbdv8/PwsvDqdpiC3xcaZQqUhI5vLjlWacCA16X3icbvdClc6fPnypY8sZGyV5vt+59JX2zbLvs5lO87PFCoNGdlcdqzSVquV/F7cc5vjOG7Db29v+8hCxlZpjdeDaG6zsNI5+fX3/HaVG2PjTKHSkJHNZccqbSueeOxfacI7/oFUWv/Tg8KRru/7feR6bJwpVBoysrnsXqUJ75j9L+Kg0vpfxJGmqeCXv9y2q1yPjTOFSkNGNpfdq7S2rwNP9nGp/YFXms5RVJtcRF7v7Dyr6fxModKQkc1l9ypt27LipdZpqDRZlitNZxWtTS6nz3WPzs8UKg0Z2Vx2stK22+1yuYyiSP28ZxRFxaV0VJosC0/Q87zO30EV5HL6LKc5P1OoNGRkc9nVStujnOf5arVK0zRJkjAMD7bS5vN5H7kc4TvXVBqVhoxsLlNplWw2myzLkiQJgmA+n2v+yszkACqt7VetNWXNvzLpukLE+ZkyedTIer3WeZjK/f29/oORka2WT05OhIl6dHRkLFcy5tHIsiyKotlsNp1OO4qrPX/5y1+G3OYXkheLRdsT/PHHH/vI5Xz48EEYyaurK2O5EhtnCkdpyMjm8sEepa1WqziOgyDY1w9ec5Qmy+XI34iXL0JxfqZQacjI5vKhVdqXL1+iKNpXjZVDpclyOVSaECoNGdlcPpxK0/ktyko8z/N9PwiCJEnSNFUHdm0PptJkuRy50uI4NpYrsXGmUGnIyObyIVTaTmVWdNhyueQi/nIGqzSDn61pi40zhUpDRjaX3a60PM+Fy+7L8X2//PW1NplKM5YrMf62tfMzhUpDRjaXHa60u7u7zjUz3/fDMGz7TRMqrRwqbZiZQqUhI5vLrlZalmXC81KJoki+HQaVVg6VNsxModKQkc1lJyuts8+CIND5tUkqrZw9Vpr8q2lUWndGuwMhI7+u7F6lLZdL4RlN9H5nsm2bqTRjuRyueBRCpSEjm8uOVdrz87O8fnZ+ft5nm6k0Y7kcvpcmhEpDRjaXHas04X64k8kkiqKe20ylGcvlUGlCrKm0PM+vrq5eQt6O8s0F2QrZpUqTf1tSrdBQabI8hkqTlzmdnyljr7Q8z9M0VbeSk5/2rnI5Y3tzQbZFdqnS5EO0u7u7/ttMpRnLmn9lwp34dR40/A5UbjL9V0tHbszY3lyQbZFdqjSdi+ioNFl+9Urj99ImTxp5eHjQeZjKer3Wf3Bd/vbt23w+9zyvbbcwloX03Gbkg5VPT0+FiXp8fGwsV/LSo3FzcyM8kcvLy71s88XFRduf+Otf/9pHFjLkOAtP8P37933kcubzedtfmc/nfeRKbJwpoztKk4+p5a9cyLKQsX1eRrZFduYoTZ53m81mL9vMUZqxXI5wy83Or1g4P1NGV2nyDVI7D6sFWcio3lyQLZKdqTRh3pUnHZUmy8NUmnCKOMuyPnIlNs6U0VVa523lNJfTRrvTI7skU2k7bTOVZiwXES531PnE7/xMGVelyRenqsjfuhh+m5EPWabSdtpmzUp7fn5OSknTtFMWMpJKOzs76yMXEX5zLgzDPnI9Ns6UcVWafEJf/2UbcpuRD1mm0nbaZs1Kq3y0ra+gj3bfEJ6g53l95CLCeSydG286P1PGVWk6vzSouZw22p0e2SX5ECptUjrbT6XJslxp8g8XyLKKcAdOzUvnnJ8p46q0zoU0leL6qzFsM/Ihy85UmnA6a1I62/8qlVZfaxjtviGfZ9JcNGmUVYSvw3deGCLLjbFxpoyo0jpvAV6kfm79tbYZ+cBlZypNnn17+ar1crkUPrOWKy1N0/J/cqbSfN9/fn423ubNZtM2gPrfbnJ+poyo0uTPieXoLKeNdqdHdkl2ptK2XedI+twQ6/n5Wb7b1uTXlVZ5K6gff4x23+i8GkDzp3kat7nt5LDneTonrgS5LTbOlBFVms5CmorOctpod3pkl2SXKq1ybFSJ8W2L0zTVWVBYLBbFP6w8vv5+Pdp9Q+cCN50zhHVZ+ExweXnZZ5uF2DhTRlRpmgtpk8nE9/3OhdbR7vTILskuVdq262Plrj8uc319rf85tTh8qRyiNX5+He2+oVNpE42lk4os9FkURaMdjXIOrtL0F9JUOj/pWPEyI9suO1ZpwmqNyvn5eeenyTzP4zhudGTc9/36AxrP1I1239CstMlkEoahcM19IWdZ1nn7q9GORjkHV2n1hbT6bfg7d/SBtxkZ2bFK2263q9Wqs3iiKFoul+VuW61WWZapJhMuYdhsNmEYCnj9bzU26Gj3jcZKS9O07VkHQZAkyWq1Kp9c3Ww2xWAKg1O8B452NMo5uEqrfxKJ41jY+zuX06x4mZFtl92rtK1GqxVzsEjng4v3353Ox8Rx/OqjsZNcr7TiWrazszPN8dQZmfJVoKMdjXKGq7RHjazXa52Hqdzf3+s/uJCn02nlSWZZ9uHDB2EIvn79+rrbjIx8cnIiTNSjoyNjuZKBR+Pr169v3rzReW/tzHQ6vbq6KuNXV1c6//D8/Hwko6EvLxaLynMv3qbW6/Visai/0e2a2WyWZdket1mIjTNlFEdp9Q9u6iBM/uV4+e4vVnxyQbZddvIorYi8kNMZz/PavlycZZlwOOL7vvyt5NHuG5WjtPKSv5LzPI+iSP9SOJ1hGe1olHNYJx4bF9LUA4TXvu2kxDDbjIy8db3SVLIsC8NwpwuSgyDIskxTVqvm0+lU/cM0Te29njlJkuL8YWW9vywXV9BonuANw1C4IG60o1HOYVVa/ZNg8WFEWE6TvzBvxcuMbLt8CJVWZLVaLRaLKIqCpkRRpK50GNU2j1zO8zzLsiRJKoM5m83CMEySROdOxFaMxmFVWv2jSjExhIti5StErHiZkW2XD6rSkJGN5QOqtLaFNBX5F9SEjzBWvMzItstUGjKyjnxAlSYspKmYLadZ8TIj2y5TacjIOvIBVZqwkKYiXHMlLKdZ8TIj2y5TacjIOvIBVZqwkKZitpxmxcvcU15p5/Pnz/oPvr297S8PPxqvIlNpyMg68qFU2s3NTWdLrcTltLZ3Tyte5j7y7e2tMCyvm7aPGjaO80gmqhWjgYzclkOptHfv3lWeW+NvoQnLaW1fybTiZe4jU2ljkKk0ZGQd+VAqbT6fV55b488uGCynWfEy95GptDHIVBoyso58KJXmeV7luTX+PKvBcpoVL3MfmUobg0ylISPryAdRafI30sqRl9MaW9CKl7mPTKWNQabSkJF15IOotPo30hoX0lSE5bTGc5VWvMx95H/961+Jdi4uLvQfvFgs+ssDj4bzE9WK0UBGbstwlfakkYeHB52HqazXa81H1hfSLi8v9R9c5OzsbLBtRkYu5/T0VJiox8fHxnIlVowGMnJbBpspr3mUVj/wajyFqJLsuJz2QtuMjFwOR2nIyDqy+yce9RfSVHZdTrPiZUa2XabSkJF1ZPcrrb6QVvl5oXqEH4StL6dZ8TIj2y5TacjIOrL7lVb/qpnwG3cqs9msbUTqdWjFy4xsu0ylISPryO5XWmUhzff9zp+yXSwWbSNSP2lpxcuMbLtMpSEj68iOV9quC2kqwjex6o1oxcuMbLtMpSEj68iOV5rBQpqShW+nVc5bWvEyI9suU2nIyDqy45VmsJCmZOFmj5VStOJlRrZdptKQkXVkxyvNYCFNyfXDuyKV+xdb8TIj2y5TacjIOrLLlVZfSBN+nLoi1/9tuRdfbpuRkRtDpSEj68guV1oURZXnE8exviwspy2Xyxfa5nKQkYtQachjkO/u7oRbL/WR9R88kpnyCpVW76RyFXXKwnJauRot3TWR7ZKpNOTXlZfL5dnZ2WQyWa1W+5W3ds6UoSstz/P6QtpOsuZymnW7JrKNMpWG/FrycrkMw7DY2ag0laErLcsyoYd05Lu7u7ZxKbejRbsmsr0ylYY8vJxlWbnMqLRyJo8aWa/XOg9Tub+/F/7r+fl54/PRyfHxsfofwtDc3t7ufZsrQUYucnJyIuyNR0dHxnIlVowG8r7kv//977OWtL0BFm99r7XNI5kpQx+lCRd37CXFj09a8Wmrj3x7e+trx/M8/QdPp9P+8sCj8VoyR2nILyEb/GY9R2kqg1ZafSFt7ylOY45k1xzVTj9YqDQVKg3ZTKbS9OVKBq20+kLa3lO8mY5k1xzVTj9YqDQVKg3ZTKbS9OVKBq20+jfS1NvfrifEdF7akeyao9rpBwuVpkKlIZvJVJq+XMmglVZvo3fv3hnIwnX8k1+W00aya45qpx8sVJoKlYZsLK9+nSzLhK/kTqi0XzJcpTUupN3c3BjI8gnMMAz3tc2NGYn85cuXQDvz+Vz/wbPZrKesXoIhR8P5iWrFaCC/qCxfi0ClqQxXafUe8n3fTJZfWnWIMOZdE9kZmUpDHlKm0jozXKXVF9KCIDCW5RW1zWYz8l0T2Q2ZSkMeUg7azz1SaSrDVVq9hOI4NpYbrzQpkqbpyHdNZDdkKg15SJlK68xAldZ4qnC5XBrLnctpI981kd2QqTTkIWUqrTMDVVrjQlofebPZCANkvEqnE2TkIlQa8pAyldaZgSqtcSGtpyxfIfLt27ee29yWke/0yEPKVBrykDKV1pmBKq1xIa2nXL8XdTnX19c9t7ktI9/pkYeUqTTkIWUqrTNDVFrbQlpPOU1TYYzevn3bZ5uFjHynRx5SptKQh5SptM5MnjTy8PCg8zCV9Xpd+X+ur68rT8DzvP7yTz/9JIzRb3/72z7bLKTnaCC7JJ+engo74fHxsbFciRWjgfzS8nw+b9vZPn/+3EdujI0zZYijtLaFtP6ysJzmeV6e58aykJ7bjOySzFEa8pAyR2mdGaLS2hbS+svCCzz55dymmSxk5Ds98pAylYY8pEyldebFK01YSOspb7fbJEmEYSqK00AWMvKdHnlImUpDHlKm0jrz4pXW9o20/vJ2u12tVsIwFac3DWQhI9/pkYeUqTTkIWUqrTMvXmnCQlpPWaXz/sXGcltGvtMjDylTachDylRaZ1680oSFtJ6yyl6W01za6ZGHlKk05CFlKq0zL1tpjQtpWZb1l4vsZTnNpZ0eeUiZSkMeUqbSOvOyldZ4c+Hy0PcfsuVyKYyU5nKaSzs98pAylYY8pEyldeZlK63xJ2D2W2nbfSynubTTIw8pU2nIQ8pUWmdettIay6a8vvXSL/Pk1+c5d5UbM/KdHnlImUpD7inneb4qRd0ggkrTlyt5wUprOyW438tDtl2VpnPuceQ7PfJoZSoN2UDebDZJkgRB4Pt+5XO/+n9ms1mSJJvNpoJQaZ15wUprG33f94vRf+kTjypRFJnJjbF9OiHbOFGtGA3kTjnLMvkjeCVBEKRpWiBUWmf2WWlpmiZJslgs4jiWa8b3/TiOkyS5uLhIkkRzW9UTe35+TkrR3D+CICj+SXkXKcuasXc6Ie9dptKQNXNzc7NTmVXeMO/u7rZUmkb2WWlmL9iuX4iW7xiik/qpyJHs9MjWyVQask7iOO75rjWZTOQjPCpNZfKokfV6rfOw2Wxm8DpNp1Md/PHx8f7+/vHx8fb21uCvlDObzRplzWiOBvIhyCcnJ8KednR0ZCxXYsVoIDfG7I2xnul0KlC3t7d73GYVG2cKR2n/lzVj3SdE5JeTOUpDFrLZbDrfFX3fLy+LRFEUBMF0Ot31bY2jNBUq7f+yZmyZTsgDyFQacluen5/lSwqCIGj7itHj42OWZWEYdl77VoRKU3mRy0MS7fS/PESWG8PlIcj7kqk05LbIH/Hle/UVcp7njTesoNLaMsRPgCIjuypTadvtdrVaJUkShmHxRSsVz/PUWTV1Yk2+h7gzo6Ei91Dn/R8qcpZlnYdrVJoKlYaMbC4fcqUtl8udzoxNJhPf96MoUjfIeJVtHkZO01QYBJ17qdfl1WolDzWVpkKlISOby4dZabt+X7gSVWzPz89DbvNgcuPPjxTpcyN1uSmpNBUqDRnZXD60SutZZuX4vl8+FWnjaDTKwilH3/fr97jSl7d81VojVBoysrl8UJWm833h+lqa/PhiVcm60WiU5UO0zjvzCbIKldYZKg0Z2Vw+nEqTD87UucTKu+rT01Oe5+pidOHfqls92TUabbJwiOZ5XuMioqasQqV1hkpDRjaXD6TSzK5HL8vCOpA6HWfRaAiycIh2dnbWR1ah0jpDpSEjm8uHUGnC22hlPUyWhVYLgsCW0RDkLMuEneH6+tpYLkKldYZKQ0Y2l52vNLnP5LfRuiycgVwsFvva5koGG2fh2fm+v5dtptI6Q6UhI5vLbleafPFe53toXU6SxGys9Le5nsHGWb52n0obZqZQacjI5rLDlXZ3dyc8tc77XzTK8j015NuL6GxzY4YZZ/nes3EcU2nDzJTJk0YeHh50HqayXq/1H4yMbLV8enoqTNTj42NjuZKBR2Oz2Xie1/a83r59ayYL5mQyubi46LPNbRlmnC8vL4Wndn19vZdtns/nbX/i8+fPfeTG2DhTOEpDRjaXXT1Kk085Vm78oSnLV09MtO+s0bbNbRlmnOUD0NVqtZdt5iitM1QaMrK57GSlyd8X1v/pjIosLKSpWF1p8nU0+9pmKq0zVBoysrnsZKUJBxx9LuKQb1E40bufb9s2CxlmnIUPAVTalkpDRrZCdrLShHfn8/NzY3mz2QhjNdG75KRtm4VQaTpyY2ycKVQaMrK57F6lySte+q1Tl7fiO7LtF/F33n2fShtmplBpyMjmsnuVJn9fuOc2bzabxrd+3/c/ffrURxZCpenIjbFxplBpyMjmsnuVJrw1h2HYf5vzPI+iqHzD/jAMHbjHI5U2kplCpSEjm8uOVZr8feEkSUa4zSORqbSRzBQqDRnZXHas0uTr7Fer1Qi3eSQylTaSmUKlISOby45VmryQNs5tHolMpY1kplBpyMjmsmOV1vl94RFu80hkKm0kM4VKQ0Y2lx2rtM4vV41wm0cic/eQkcwUKg0Z2Vw+nEpThxoj3OaRyFTaSGYKlYaMbC5Taa++zSORhStrqLTtkJX2qJH1eq3zMJX7+3v9ByMjWy2fnJwIE/Xo6MhYrmSY0ZhOp23PZTabjXObRyJfXV0Je8Lt7e1etnk2mwl/oo/cGBtnCkdpyMjmMkdpr77NI5HlO1gul0uO0oaZKVQaMrK5TKW9+jaPR5Z/kWcv2yz8CSpNhUpDRjaXqbRX3+bxyMK3+oIg6L/Ny+VS2NmoNBUqDRnZXKbSXn2bxyMLP2Lg+37/be784WxjuS02zhQqDRnZXHas0viqdU9Z+ExwfX3dR5ZxKq0IlYaMbC5Taa++zaOShXOPZ2dnfWT59ptUWhEqDRnZXHas0rhtcU9ZWO7yPC/Pc2NZPkSj0opQacjI5rJjldb5k9Yvt82LxWK5XL6EPPA4CwdqYRiayXEcy302odJ+CZWGjGwuO1Zp8peroih6oW3O81x9yzsIgjRN9yhvBx/ntl/uVtF5dhVZvtCxCJWmQqUhI5vLjlXatuvOxS+0zZUTnp1HMyPfN+SDKp2D0UJerVadpxxVoijqs82NsXGmUGnIyOaye5UmXCnu+/7Xr1+NZSGVd+0sy/Ylb19pnOULbTqfoJKXy2VlZOR6830/KGWz2ey0zfXYOFOoNGRkc9m9SpNPcy0WC2O5LZVDNN/3Oy+jGP++kee5XD9RFAlP8/HxsX6opxpLMCtpPBXp/Eyh0pCRzWX3Km0rnnuUn1Gn3JjKn9O5hsKKfaPznKGqqCRJVqWkaRqGYeP9o5MkodI6Q6UhI5vLTlaafCl/50kzQa6nfiyi41uxb2x3WQnrjLp7C5XWmcmTRh4eHnQeprJer/UfjIxstXx6eipM1OPjY2O5kiFH49u3b57ntT2p+XxuLFdyc3Njhluxb6h8+/ZtPp/r91BjPM/7/Pnz09OTTHm/jvonIxmNwWYKR2nIyOayk0dp264DtSRJjOUijatNmoeAVuwb5cRxLHxKkBOG4fPzs3LqR2m+78/nc3X2cr/bvLVzplBpyMjmsquVtu26XcXd3Z2xrFJ/d1bn1vpsc2NGMs4//fRTGIY7nYcMgqDS8eVBK77DZ8VoUGnIyBbIDlfa3d2d8NR83+/8flWb/Pz83Lgm5MbdQ2Q5z/M4jn3fl7//9+bNm8YD1iiK1AX65f9qxWhQacjIFsgOV9pW4z5M8r0wGuX6d61UNL8p3LnN9YxznPM8Xy6XSS3q/OE4t7mPTKUhI1sgu11p267f6JpMJkEQtB1d1d/E27QgCKwYDWRjmUpDRrZAdr7StuJ9eIv4vh9FUZZl5TtWKHmz2WRZJiwj8eOihyBTacjIFsiHUGlbjWO1Sr2peJ7XeTWE7/uunmpDLodKQ0a2QD6QSttut2ma7utbw0WCIChuCmXXaCDvKlNpyMgWyIdTadvtNs/zN2/e7KvP4jgeYJuRRyJTacjIFsgHVWlKXi6Xu36/qpIwDOtXlFg6GsiaMpWGjGyBfICVpv6H+n5VEAT63aYuIWm7PNLq0UDulKk0ZGQL5IOttHLU96uKbwEXmc/nQRDEcZymaeNvd73iNiMPLFNpyMgWyFQaMrKOTKUhI1sgU2nIyDrycJX2qJH1eq3zMJX7+3v9ByMjWy2fnJwIE/Xo6MhYrsSK0UBGbstgM4WjNGRkc5mjNGRkHZkTj8jIFshUGjKyjkylISNbIFNpyMg6MpWGjGyBTKUhI+vIVBoysgUylYaMrCNTacjIFshUGjKyjkylISNbIFNpyMg6MpWGjGyBTKUhI+vIVBoysgUylYaMrCNTacjIFshUGjKyjoTTkvgAAAH/SURBVEylISNbIFNpyMg6MpWGjGyBTKUhI+vIVBoysgUylYaMrCNTacjIFshUGjKyjjxcpT1p5OHhQedhKuv1Wv/ByMhWy6enp8JEPT4+NpYrsWI0kJHbMthM4SgNGdlc5igNGVlH5sQjMrIFMpWGjKwjU2nIyBbIVBoyso5MpSEjWyBTacjIOjKVhoxsgUylISPryFQaMrIFMpWGjKwjU2nIyBbIVBoyso5MpSEjWyBTacjIOjKVhoxsgUylISPryFQaMrIFMpWGjKwjU2nIyBbIVBoyso5MpSEjWyBTacjIOjKVhoxsgUylISPryFQaMrIFMpWGjKwjD1dpjxpZr9c6D1O5v7/XfzAystXyH//4R2GiHh0dGcuVWDEayMhtGWymcJSGjGwuf/jwQZiof/7zn43lSqwYDWTktgw2U6g0ZGRz+Z///KcwUT9+/GgsV2LFaCAjt2WwmUKlISP3ks/Ozhpn6e9///v//ve/feRybBkNZOS2DDNTqDRk5F7yv//97z/84Q/1Wbper3vK5dgyGsjIbRlmplBpyMh7kD99+nR2dvab3/zm+++///jxo/ypcydZxa7RQEZuy0vPFCoNGRkZGdkRmUpDRkZGRnZEptKQkZGRkR2RqTRkZGRkZEdkKg0ZGRkZ2RGZSkNGRkZGdkSm0pCRkZGRHZH/B7obXoG+AAoeAAAAAElFTkSuQmCC" alt="" width="215" height="98" />
(1)判定
A是可逆矩阵的充分必要条件是,即可逆矩阵就是非奇异矩阵。 存在可逆矩阵
deltA= ac - bc;
(2)如果DeltA != 0 则矩阵可逆
如果矩阵可逆,则
2阶伴随矩阵求取口诀:把元素a和d交换位置,并且保持在b与c的不动并改变b与c的符号。
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAXcAAAChCAIAAACzsmgvAAAS3klEQVR4nO2dvW7jxh7F+SaRCj7BAqpYLFIEbhkgQFyzWaQKDCF6gctqu4XqNCoNLCAYcBEXutggcGFCLBghGneCDTqLu85F4HzA13Z4i1lToyE5Gokc7X+oc6BCNunfjsizR/NNJ6vW5eWl4qik6+tr/ZNBBhnk/SE7RMoBMsggt5WMlAEZZJDNkpEyIIMMslkyUgZkkEE2S0bKgAwyyGbJSBmQQQbZLBkpAzLIIJslI2VABhlks2SkDMggg2yWjJQBGWSQzZKd62rFcaw4Kmk2m+mfDDLIIO8PGXUZkEEG2SwZKQMyyCCbJSNlQAa5teSbm5vvvvvu5cuX33zzzWw2a5CsEFIGZJD3iPztt9++fNaXX355f3/fFFkhpAzIIO8L+e7u7uWqxOoMUgZkkEGuS765uZFSJo7jRshqIWVABnlfyEgZkBsjE+nhA5kaGSkDcmNkIj18IFMjI2VAboZMp4cPZGpkpAzIzZDpOAlkauQqbzw+Pt7e3iZJ8uHDB7Hma67MSBm7yUgZkKvIVd64vb1N0zRJkjRNf/3113/++cd0mZEydpORMiBXkUu98fT0lKZpnjJpmupUZ5Aye01GyoBcRS71xuPj4ydImctqXVxcKI5KiuNY/2SQmyKfn59LTjo5Obm8vGSMzWazKIpms9l8PidVZpB3Qy71BmMsSZIkSaIo4m8YY6bLjLqM3WQ6bW+QqZEJ1WU2OttcOUDejkyn7Q1ylmWMsTAMwzAcDodpmjZI1hFSBmQjZDpOqku+u8t8P/O8v168yHw/Y6wx8rN2cAdd13We5Xleg2QdkfUGUsZuMh0n1SVHUeY4y1cYNkZ+FlIGKQPyNmQ6TqpLRsooyToi6w2kjN1kOk6qS0bKKMk6IusNpIzdZDpOqktGyijJOiLrDaSM3WQ6TqpLRsooyToi6w2kjN1kOk6qS0bKKMk6IusNpIzdZDpOqktGyijJOiLrDaSM3WQ6TqpLRsooyToi6w2kjN1kOk6qS0bKKMk6IusNpIzdZDpOqktGyijJOiLrDaSM3WQ6TqpL3oOUSdN0MpkMBgO+0CmKIqNlpuMN57pacRwrjkqazWb6J4PcFDmOY8lJZ2dnV1dX8/l8Pp9Pp1P+ZrFYfMIys3//+7//+td9r/fQ7fLXfa/35+Hhf46P83Pen56KKfP7YKBDpnYHu91unjK9Xi8/4fj4+ODgQDzK1e12Dw8Pp9OpiTLT8QbqMnaT6XxfVarff+h2V+op4sv3M752ub11mX6/7yjluu54PG68zHS8gZSxm0zHSeXyvMp8yV+um43HrUyZNE09z1NHTK7RaNRsmel4AyljN5mOk0pUGjGum7luye/7/ZaljOu64o88d/r9/mAw8H1fOsTPTwtb0rTDG0gZu8l0nCQrCEoaR5PJx6OMZcOhqqZjf8pI+TJ5/uw5udiS8n2/wTLT8QZSxm4yHSetaDKRUyMIys8shlHrUiZY/ewiOQxD6WS2un1XO7yBlLGbTMdJK1rNjj8PD1UnD4ctTpmgEK8SWeq46ff7TZWZjjeQMnaT6ThpRWLPi+veTKdrcKNRK1OmGDFF8mg0knpnmiozHW8gZewm03HSUlJzKQi0yFLTyf6U0Z/7K/UZN1VmOt5AythNpuOkpaTRotFIi/wJR7JHo8zzpNd9ryf/crUtU0reLmWkRpM4J7gd3kDK2E2m46SlxJEj183SlHrK6Ezq4Z9lHXm7lJEGm4bD4foya5DpeAMpYzeZjpOWWu2U0SXvccpII02h8Nnb4Q2kjN1kOk5aSkwZz9Mlf8KUqRpNl14VqZEhZVaFlGkbmY6TlrIuZfi/vvp6f3oq/1KDjJQpLTNSxm4yHSctZWPKNERGypSW2bms1sXFheKopDiO9U8GuSny+fm55KSTkxPGWJIkSZJEUcTfMMZ2Vub/dTp5WPyv09EkL96+FVPmw9GRTjGo3cFOp5OHxYsXLzTJR0dHYsocCZ+9Hd5AXcZuMp3vq6Ws6/1tjrxdXSYIAjFl8hVPNctMxxtIGbvJdJy0lDSSjZRZR5bmy4hLmdrhDaSM3WQ6TlrK91fyYjJByqjJmPurK2r3e0/IdJy0VBiu5EW/v58rDJyKjakk8nA4FP9E2vyhHd5AythNpuOkpaRaieuuJ0vB1JaUKQ0aiSw1l6Tz2+ENpIzdZDpOWtHqbni/Dwaqk1u984OzumJAIkv9vm5henE7vIGUsZtMx0krKtZNytoOWbYXu1g5jhMEQfq822ZOliLGWZ0pU7/MdLxhQcq8e/cuiiKdh9dsSqbm0S3IdJwkq7i5bxBk4kZwfCW0OBol/on9KSOtgXRd1/f9MAwHg0EQBMU8Ku0tboc3LEiZ/Ck20maF9cnUPLoFmY6TZI3HlWsOixuMu24WRSuhY3/KRFEk7VClkOu6d3d3zZaZjjcsSJler1faZK1PpubRLch0nFSi4g54VasQeUW1dSmTZdl4PK5qRom1mNKIqVlmOt4wnjLj8dgTxPcoVJMZY+JDsIopI53QeJktItNxUrkmE9W+Cq67sjWU/SmTDxi5rptXve/u7kqbSDxfSke7GykzHW8YT5nS/ZbVZP4n+TbLg8FAbLWORiN+gjgRu9kyl4ommY6TFPrtzZvM95dtJdf9uPWc9Pih8TgLgr9evCg5tPMyb01mjFX1IU4mE94vE4bhaDQy3QNAxxtmU0aacZTHvIIs/onneYwxMWXEbvniw2saKXOVaJLpOAlkamQ63jCbMlWP73z9+rUCFYZhXgNyXffg4ICnjFgdFYcGmy1zlWiS6TgJZGpkOt5wrqsVx7HiqKTZbCb9Zjqd5sNDkj7//PO1wDdv3vAeGVHdbncwGEynU0NlVogmOY5jyUlnZ2dXV1fz+Xw+n0+nU/5msVjQKTPIuyHT8YbBuow4X0B6ZnCn09FhpmkqNpHEx4AaKrN1ZDrfVyBTI9PxhsGUkWYoSRuCqbvWGWN5tzyvEOU03/cVWUPzfpsj03ESyNTIdLxhKmUmk4mYKYyxNE111sUzxnzfF087PDzkb6R6Telg9hZlDvV0dHRUdahYkj10EsjUyHS8YSplxETIp7qIncGu65Z234rTJfnkGnGMaTgc5lFV+njQTctcfBz6FirOGNxDJ4FMjUzHG6ZSRmou8V9KA9vFtWFcnue5rps3qV69eiXWfRhj/IRGxpiQMrsvM8i7IdPxhpGUKTaX+O+lRpNi0YCYIKUrDEojZosyl87o2VTF1t8eOglkamQ63jCSMmLHipQO4iFHbwGk6XVMw+GwZr9M8VPsoZNApkam4w0jKSNWWKRmkbRKtbRvRVK32+UD4ViTXSTTcRLI1Mh0vNF8yog5Utp7otloKpJ1RPN+myPTcRLI1Mh0vNF8yogDSaXD1VKjae1Euxbcb3NkOk4CmRqZjjcaThmpf1fa8ZRLajSVLnoskjVF836bI9NxEsjUyHS80XDKiEM2VYPNWZaJD/pc22hqwf02R6bjJJCpkel4o+GUWdtc4vrqq6/E6ox6tUEL7rc5Mh0ngUyNTMcbTaYMY0zMjtLmEtdGjSbTdwUrDHZcZpB3Q6bjDeeyWhcXF4qjkuI4FlcVdDodNVlsNHU6nZ9++klB1i/GpmU+Ojpyaqv4YY2WWfzx/PxcctLJyQljLEmSJEmiKOJvGGObks2VGeTdkOl4o8m6jNjvq66eXF5eSg+jUVR8jGY/Vhjsvswg74ZMxxuNpczx8bH4H2/tnsnSKgRFJ47Ru4IVBrsvM8i7IdPxRmMpw/dnqPpuLyVLG49XTe01fVfqrzAoDqXtoZNApkam443GUkbcfNN1XZ3/sdKuwH3xoRmCWnC/zZHpOAlkamQ63mgmZfSfoadQVQ2oBffbHJmOk0CmRqbjjWZSRlo0sLVKVxu04H6bI9NxEsjUyHS80UDKpKurCuqodIl2C+63OTIdJ4FMjUzHGw2kjDRMEwSBfk+q+JwDp6LR1IL7bY5Mx0kgUyPT8UYDKaOzm6+CLNWDikPgLbjf5sh0nAQyNTIdb9RNGWlVgWLaSxVZqs4Up/O14H6bI9NxEsjUyHS8UTdlpIxQT8YrJUs5VawNteB+myPTcRLI1Mh0vFE3ZTbd+K6ULE2ckVYbtOB+myPTcZKaPJlM+v0+f/gEF3/AVvFrieZ13oY8mWRhmHle5rrLl+f9dXCQDYeZRsdCJblCZL1RK2WkVQJr96OqIkv9x1Kzi7STPjWZjpOqNBqNis87l2qvobA5NM3rvAE5TbMgyFw3cxzVy3WzIMju7syVmY43aqWMtOJRs7lUJBfHwsXVBhSdRIZMx0mlkhyiUP7VQvM665LDcH2+SFmjrNS0wxvOdbXiOFYcvb6+FlcVfPbZZ+qT1WTp6+7Vq1f5odlsVoesUAvIcRxLTjo7O7u6uprP5/P5fDqd8jeLxWL3ZS6twnSfVTx0eHioSTZX5jrk96enxRx56HYfut37Xu++13vodosn3Pd6hspMxxvb12WkVQUHBwd10k5qNIldPNfUvq8okel8X0mShgUcx/F9X5zbzRgbDofFzRVpXmctchjKDaLiXHbG/jw8lLOmuhHQDm9snzLiI6td1/3+++/rlCOr7kim5SRiZDpOEiV12DnK/YPCMOS33vqUiaKP+VLxaOYlOQhWUqZ6/kc7vFF3jCmKoiiK6peDizGWA3PRchIxMh0niZLWtQ0GAzUtiiLP8/iifJrXWZesMXj0kSx231QPzrbDG0aeLblFOUDejkzHSbnSwtPQW3CdmydL1ZmKzZXa4Q2kjN1kOk7KJXWxhWHYguvcPFnsxHGcbLX+Xov8LDreQMrYTabjpFzSHEvGWAuuc/PkyQQpU362uXKAvB2ZjpNyFXvxW3CdmyfzrmKkDK27AnIZmY6Tcokpw4eNWnCdGyAzlkVRFkXvT0+zKMpGI6RM+dnmygHyduSGneT7meetf6WpYpRQbC7tdcpMJlkQLNcxqScBI2V0RPp+t5fcoJNKp66Wv8KwqsxRFCFlNl5ngJTRFNH73XYyUoYWOYoyz9ssX5Ay+mhy93s/yA066WY61f0GHo2QMiXkNJUvoOtmvp+FIe+RQb+M1tnmygHyduSGnZSm4v+H8hdjijKnq1Py9itlfF9eN1A2DxhjTGvONlcOkLcj03FSrj0dyWZMc2nSPqbMZbUuLi4URyXFcax/MshNkc/PzyUnnZycMMaSJEmSJIoi/oYxtrMydzodsdH0ww8/tOA6ryV/ODoSU+Pm9Ws1efH2rXj+4u3bxstMxxuoy9hNpvN9lUvauWo4HLbgOq8n9/s6dZNsP+syG51trhwgb0em46Rc0sZDnudpktM0VZOLInQHpU6ZtSmD3t+qs82VA+TtyHScJEraX1Vn5we+3/hasiRCd1Ba/Vi9MdX19XUWRfJoFFJGR4Tu9z6R6ThJVBiGzqoUe0Lnu1jxrmKa13k9WaqbVPf+/vbmTcmMAaSMjgjd730i03GSpOKj0/mOnOnz4C5jLM8XcUCK5nXWIkvZUXxEAX+8AWblqc82Vw6QtyPTcZKk4qaceZRwFQ/xJ+3QvM5aZKnRxGfleV4WBMsFTeIh8UekjI5o3e+9IdNxUlGj0ag0TUrVkielVFVVpBefsCeuRUDK6Ijc/d4PMh0nlYoxJu0BXFq7Efcep3mdNyCrl0q67u95XzhSpvRsc+UAeTsyHScp9O7dO+nxtfkTbCeFZ4nQvM6bkdM0Gw6Lz67NhsMV8nj8cauNft9Emel4AyljN5mOk0CmRqbjDaSM3WQ6TgKZGpmON5AydpPpOAlkamQ63kDK2E2m4ySQqZHpeAMpYzeZjpNApkam4w3nulpxHCuOSprNZvong9wUOY5jyUlnZ2dXV1fz+Xw+n0+nU/5msVjQKTPIuyHT8QbqMnaT6XxfgUyNTMcbSBm7yXScBDI1Mh1vIGXsJtNxEsjUyHS8gZSxm0zHSSBTI9PxBlLGbjIdJ4FMjXx7e0vEG0gZu8lIGZAV5K+//lr0xu3tLVIG5I3JSBmQFeQff/zxiy++4MY4Pj7OsgwpA/LGZKQMyGryzc1NHMeLxYL/iJQBeWMyUgbkjchIGZA3JtPp4QPZCjJSBuRtyER6+EC2goyUAXkbMpEePpCtICNlQN6STKGHD2QryE9PT0gZkBsgI2VAVuj9+/eiN56enpoic5WkzGW1Li4uFEclxXGsfzLIRsmMsSRJkiSJooi/YYw1Qs5l0dUAWdJ8Pv/555+5N3755ZcGyVzFMqMu00Iy6jIgq/X4+MgYe3h4aJycocW0J+RP0vYGGeQqMlKmneTdt71BBrmKjJRpJ/nvv/++ubnhKfPHH380SOay62qA/GnJSJnWknfc9gYZ5CoyUgZkkEE2S0bKgAwyyGbJSBmQQQbZLBkpAzLIIJslI2VABhlks2SkDMggg2yWjJQBGWSQzZKRMiCDDLJZMlIGZJBBNkv+Pxdc5fovYueSAAAAAElFTkSuQmCC" alt="" />
(3)请求A的逆矩阵的公式如下:
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAzMAAADlCAIAAADoRj5OAAAgAElEQVR4nO2dz4scx/2G+z/xzkD/AWHN7qUPusQI3RohsBUwgTbY0cmIIQt7DG5sY3KIGV18iMGDTgItc3HCgmkwRBA07GQtyavZyTqx2Ywy1ldJvJuY2FLS30NrO+3uruq3qnt2qqbfD3vwj95nnq7qmnq3f1Q7caaOj4/jqprP55XbxHF8eHjYFIpWOIpWOIpWOIpWOIpWOIpWOIpWOGoFrBzt35QXWxlH0QpH0QpH0QpH0QpH0QpH0QpH0SqLYjLTRNEKR9EKR9EKR9EKR9EKR9EKR9EKRzGZCYtWOIpWOIpWOIpWOIpWOIpWOIpWOIrJTFi0wlG0wlG0wlG0wlG0wlG0wlG0wlGVVl9++WW/33/zzTc/+OCDBw8eGGIVM5nVR9EKR9EKR9EKR9EKR9EKR9EKR9lo9Zvf/Oall166kKkPP/xw6VY5FJOZJopWOIpWOIpWOIpWOIpWOIpWOMo6qy+//DIXy5L65JNPlmhVRDGZaaJohaNohaNohaNohaNohaNohaOss+r3+8VYduHChTfffHOJVkUUk5kmilY4ilY4ilY4ilY4ilY4ilY4yjqr1157rTSZvfTSS0u0KqKYzDRRtMJRtMJRtMJRtMJRtMJRtMJR1lm9/PLLpcnswoULS7QqopjMNFG0wlG0wlG0wlG0wlG0wlG0wlHWWTGZtbfvVVG0wlG0wlG0wlG0wlG0wlG0wlFMZlmUc5ip8Xh8WFX7+/uV2xweHt69e7cpFK1wFK1wFK1wFK1wVKXVp59++s4777z++uvvvvvub3/7W0OscBStcBStcNT5WF2+fFmUzJZoVUTxnJkmilY4ilY4ilY4ykYrK9ZSkhetcBStcNT5WFlzzkz7N+XV5r5XRdEKR9EKR9EKR52PlS1rKcmLVjiKVjiKySxmMquPohWOohWOohWOss7KlrWU5EUrHEUrHMVkFjOZ1UfRCkfRCkfRCkdZZ2XLWkryohWOohWOYjKLmczqo2iFo2iFo2iFo6yzsmVWkBetcBStcJRpY/Dp06cnJyeff/75ycnJd999t1CrIorJTBNFKxxFKxxFKxxlnRWTWa5ohaNohaPqj8F//etfjx49ms1m9+7dm81ms9ns5ORkcVZFFJOZJopWOIpWOIpWOMo6KyazXNEKR9EKR9Ucg0+fPk1iWTaZzWazb7/9dkFWRRSTmSaKVjiKVjiKVjjKOisms1zRCkfRCkfVHIPffPNNmsayyezJkycLsiqimMw0UbTCUbTCUbTCUdZZMZnlilY4ilY4quYYfPz4cWkye/To0YKsiigmM00UrXAUrXAUrXCUdVZMZrmiFY6iFY6qOQbn83lpMpvNZguyKqKYzDRRtMJRtMJRtMJR1lkxmeWKVjiKVjhqFZLZPFMHBwfzqppOp5XbzOfz/f39plC0wlG0wlG0wlG0wlESqytXrohmhdyWjx49+uqrr/7whz989dVXf/nLXxZqpYpqcw+qomiFo8wZg0dHR9OzGo/H00wtyKqI4jkzTRStcBStcBStcJR1VrY8sS+vNvegKopWOMqcMTg34ZyZ9m/Kq819r4qiFY6iFY6iFY4yZ1Yw4Yl9ebW5B1VRtMJR5oxBJrPV7HtVFK1wFK1wFK1wlDmzgglP7MurzT2oiqIVjjJnDDKZrWbfq6JohaNohaNohaPMmRVMeGJfXm3uQVWURVajTJljpYdiMhOWRUekHopWOIpWOIpWOMo6K1tmBXkZ14OjUTwafXn7djwaGWQVx7GBbRXHccEqCALXdZ1Mua577dq15VrVQa3AGGQy00TRCkfRCkfRCkdZZ2XLrCAvg3qw14tdN3ac//24bhwES7bKlEFtlamcVS6WJbW5ublcqzqoFRiDTGaaKFrhKFrhKFrhKOusbJkV5GVQD3reD2JZGs6Wa5Upg9oqU0xm5o9BJjNNFK1wFK1wFK1wlHVWtswK8jKoB5nMtFBMZuaPQSYzTRStcBStcBStcJR1VrbMCvIyqAeZzLRQTGbmj0EmM00UrXAUrXAUrXCUdVa2zAryMqgHmcy0UExm5o9BJjNNFK1wFK1wFK1wlHVWtswK8jKoB5nMtFBMZuaPQSYzTRStcBStcBStcJR1VrbMCvIyqAeZzLRQTGbmj0HnOFMPHjw4rqqDg4PKbY6Pj8fjcVMoWuEoWuEoWuEoWuEoiZXkbcrpNoeHhw/Pam9v72GmFmSlijKnB7/b2Cgms6edznKtsmVOW2UrZ9XpdIrJbH19fblWdVArMAZ5zkwTRSscRSscpWQ1m83SNbvNsZJXm61s+XtdXgb1IM+ZaaF4zsz8MchkpomiFY6iFY4CrSaTied56Veq67pBYYFNthWO4qyAowzqQSYzLRSTmfljkMlME0UrHEUrHIVYXbt2rfhl6nnecq3MbCujrGyZFeRlUA8ymWmhmMzMH4NMZpooWuEoWuEouVUURZ7nFb9Gmcxqojgr4CiDepDJTAvFZGb+GGQy00TRCkfRCkeJrE5PT4MgKM1kTGb1UZwVcJRBPchkpoViMjN/DDKZaaJohaNohaNKrYbDYem3J5NZUyjOCjjKoB5kMtNCMZmZPwaZzDRRtMJRtMJROavZbOb7vjyTMZnVR3FWwFEG9SCTmRaKycz8MchkpomiFY6iFY7KWvX7fdGXZr/fZzKzzsqWWUFeBvUgk5kWisnM/DHIZKaJohWOohWOSq16vV7x69J13TAM5/P5aDRiMrPOypZZQV4G9SCTmRaKycz8MchkpomiFY6iFY5KrYpfl0EQJF8NTGZJWWdly6wgL4N6kMlMC8VkZv4YZDLTRNEKR9EKR5UmM8/zoijKopjMYgutbJkV5GVQDzKZaaEaTGZ7e3vJa0gmk0mzVnVQKzAGnXmmDg4O5lU1nU4rt5nP5/v7+02haIWjaIWjDLfqdruO43S73e3t7SJqd3e3+E16Dlb1UW22kryzL93m6Ohoelbj8XiaqQVZqaIW1FaPP/vsye7uNzdu/HN7+5/b29/cuPFkd1eO+n5zs5jMnnW7DVrVRFlxtCdfNbl68cUXRb++s7Nz9erVzc3Nbrf7wgsvpL/S7Xa73e6lS5du3LhR36q02jMGec5ME0UrHEUrHJW9z6zX65X+lTbnObM4ji20suXvdXk13FZRFAdB7Lqx65aeAPt+czMOw/Lf5zkzLZT2ObPBYCBa6TpXyR2xdaxKqz1jkMlME0UrHEUrHAVaMZnFFlrZMivIq7G2Ggy+29goiValP65bks+YzLRQGskseVEvksly+Ww4HBrVVraMQSYzTRStcBStcBSTGY6yzsqWWUFeDbTVbBb7PprJsj+eF2duuGQy00OpJjPR8j1gXbt2TcOqzg6uwBhkMtNE0QpH0QpHMZnhKOusbJkV5FW3rUaj8guX+E+//xzFZKaFUkpm8pfCgRUEgapVnR1cgTHIZKaJohWOohWOYjLDUdZZ2TIryKtWW9WPZclPMtMzmWmh8GSmcQVTVP00T2NWdXZwBcYgk5kmilY4ilY4iskMR1lnZcusIC/9tppMmollaThjMtNCgclMEstc1/U8LwzDra2tMAw9z6u83Om6rmRljaJVnR1cgTHIZKaJohWOohWOYjLDUdZZ2TIryEu/rUqDVO42sl4vjqJ4NIpHo7jfj4PgWberltiYzKoKSWai8n0/u7Zi1mowGMhRxe8oiVWdHVyBMchkpomiFY6iFY5iMsNR1lnZMivIS7OtwlDh1v4cqt9XONnGZFZVesksedBSbnV6eiq/ADoYDECrOju4AmOQyUwTRSscRSscxWSGo6yzsmVWkJdmW0milfT28Oeo09M4CJjMGkFpJDPP80qPwFIrSTiTnDbjGIyZzOqjaIWjaIWjmMxwlHVWtswK8tJpK8kJM99XQPX7TGb1UarJTPJkZanV6emphBkJTo5yDMZMZvVRtMJRtMJRTGY4yjorW2YFeem0leCE2dNOJz49VUMNBkxmNVFKyUy+4IXIajAYqAI5BmMms/ooWuEoWuEoJjMcZZ2VLbOCvJTbSpyl/vb++zpW8nDGZFZVeDKT37MvtxJhXUEHcQxmUc5hpsbj8WFV7e/vV25zeHh49+7dplC0wlG0wlFWW92+fTv3fbe+vr50KwTVZqvLly+LZoV0m/v37987q9FodC9TC7JSRam21emPf1waob5dX9e2evTee6Jk9v3amhKqWNYdV6qonNXa2lpphCp+pShZXb9+XRT4dnd3K61Kqz1jkOfMNFG0wlG0wlE8Z4ajrLOy5e91eSm3leje/8GgllWvx3NmeqhD4JxZt9uVLz9WaTWbzUSnzUpXneUYzKKYzDRRqdXp6WkQBO5ZZZ8rZlslRSscxWSGo6yzsmVWkJdaW41GkvxU14orzWqhkGSWe6O5npUomfV6vUqr0mrPGGQy00QlVsVXvYZhuHSrRlC0wlFMZjiqzVa2zAryUmsr0VOZnteA1SolM9+PXVfy87TTkW3gefFsZloy832/NJmV3r7GMRgzmdVH7e3tlR52TGbFohWOYjLDUdZZ2TIryEutrUSLkIVhA1Yrk8yiqHo1kMqfft+0ZBaGYWkyK30IgGMwZjKriQrDsNPplB5zTGbFohWOYjLDUdZZ2TIryEutrURvZIqiBqxWJpnJX5AA/vi+acksiiImM8SqiGIyU0NNJpPcAse8mllZtMJRTGY4yjorW2YFeam1lej2/9GoASsmsx9eIDYtmRW/ppjM5MVkpoPq9Xq5gzgIgtx6x0xmxaIVjmIyw1HWWdkyK8irgWR2NjEzmT1HIe82qPwJAtOS2WQyKU1mjuOMRiO5VWm1ZwwymSmgskfwxsZG+pYJJjN50QpHMZnhKOusbJkV5MVkhqPQtppMGkhmg4FpyUwEZzITFZOZDio5yFzX7ff7WSsmM3nRCkcxmeEo66xsmRXkpdBW0iUzGrBamWQWx/FwGIeh5OebrS3ZBv2+thWTmYFjkMlMAeX7fnL5MmfFZCYvWuEoJjMcZZ2VLbOCvJjMcJQVRzuTmYFjkMlME8VkhqNohaOYzHCUdVa2zAryYjLDUVYc7UxmBo5BZ56pg4ODeVVNp9PKbebz+f7+flMo86263W56wG1vbxtiVRNFKxx1/la7u7vFb9KlWyGoNltduXJFNCuk2xwdHU3PajweTzO1ICtVFN5WT3Z3S5PZs263EavvNzclcCVUtqw7rlRROavs/JXWiy++2IhVKdxxnDt37sitSqs9Y5DnzDRRPGeGo2iFo3jODEdZZ2XL3+vy4jkzHGXF0c5VMwwcg0xmmigmMxxFKxzFZIajrLOyZVaQF5/NxFFWHO1MZgaOQSYzTRSTGY6iFY5iMsNR1lnZMivIiyvN4igrjvbzfzsT35spKiazuigmMxxFKxzFZIajrLOyZVaQVzPJjG9nUkTZmMyCIGAyQ6yKKCYzTRSTGY6iFY5KrZL3gJXW5uZm7hVhjuO4rpvbbH19PfmHXq/XlFX9HWxPDxbLlllBXmptJXpvJt9oroiyMZmJHszMzpIiq9Jqzxi0I5kNh0PP89yyCoJgWVbpPzOZyYtWOCq18n2/9EtNo0rv6tCzqr+D7enBYtkyK8hLra2CoDyZ+X4DVkxmWqjzSWaz2UyUzNLX50isSqs9Y9COZCbq4KQC3feF1bRK/5nJTF60wlGpVfGsWJ2aTCaNWNXfwfb0YLFsmRXkpdZWojdCum4DVtLHC9RQmbLuuFJFIcnMcZzBYFDHSnSTmegPRY7B2K5k9tZbb8lnHdd1mcyKVjVRtMJRhicznjOrLM4KOEqtrUQLZzhOHEW1rHxfviSHAuqHZd1xpYoCk5nrusX1YHErEbb0JrOiVWm1ZwxakMw2NjYq554bN24gqPfee090707uJp7KG3SYzHAUrXBUajUcDksv37uu2+12Rf8rW2tra8k/+L7flFX9HWxPDxbLlllBXsptJXoIwPf1rUQXSZnMgAKTGRLORFaDwUDE7Pf7iFVptWcMmp7MZrNZp9OpTGaXLl1CrNbX1ytRueNShGIyw1G0wlG0wlHWWdkyK8hLua3EJ7ce7e3pWEliGZMZUHgyqwxnpVanp6eS83CgVWm1ZwyansxE16pz1e12Ra2WLSYzHEUrHEUrHNVmK1tmBXkpt9VgIEpR3168qGwlj2VMZkApJbNkHhwOh7iVaLEMx3GSJ/YQq9Jqzxg0PZlVHjRpic6RZovJDEfRCkfRCke12cqWWUFeOm0luqB5tnwGiqqMZUxmQKkms+LUJrGSxDLXdSUnUDgGsyjnOFMPHjw4rqqDg4PKbY6Pj8fjcX3Up59+iqeojY2Nyk986623OlX1wgsvpP/8xhtviFDZtspeb93a2sJ3MKlG2qpoVRNFKxxFKxzVZivJ25TTbQ4PDx+e1d7e3sNMLchKFaXRVt9sbUmy1N/ef78S9ddPP/1uY6M6ljnO006n5g5ad1yponJWyP1CSV28ePHWrVsiq729PflN4ZL5tGhVZwdXYAwafc6sNH0nC5uVdrxoaYBmrZI65jkzWp0VrXBUm61s+XtdXpptJTlt5jhxEMSSHQxD4QIZPGemjqo8Z+a67ubmpihg+b7f7/dHZ+/XGo1Gg8EgCAL5uTfRI5kiqzo7uAJj0OhkVtrT/X5ftAin5FHKBq2SYjLDUbTCUbTCUdZZ2TIryEuzrYbD6quQvh+HYTwaPf8Jw9j3n3W7wl8ZDErCGZNZVSHJ7IsvvqhcuMd1Xfx8W+nqshKrOju4AmPQ3GQWRVHpoTCbzURP5EpuC2vKKi0mMxxFKxxFKxxlnZUts4K89NsKuUsM/HHdOLknnclMHYUkswTV1KqKyKK1HIOxFcms9MRYekZU6bUPDVqlxWSGo2iFo2iFo6yzsmVWkFetthK9RlM1lqXrODCZqaPwZBY38Zo4cLVRjsHYimQmupSZ/F/RAyCSh3IbsUprWcksuZwvqk6nU7kAqeo6pZI/d5b+nVIHRSscRSsctQKzgrzqtpVoeTPwx/Pi09P/0ZjM1FFKySyG164qluu6URQZ1Va2jEFDk1np9crsM7el1zqdqguatiezmfgdsYsrSZMu/TulDopWOIpWOGoFZgV5NdBWvZ7mqbLiwg1MZuoo1WQWx3EURUpXNl3XTW/7NqqtbBmDhiaz0jOouZfMiDKK5BxPTaswDNMXN21sbKT/nDsiiy96EvWoqtVoNMLHRlPFZFZZtMJRbbayZVaQVzNtFUUKJ89cV/jwJpOZOipn1ev1chdMBoNBKWowGPi+Lzk7kPx6GIbZw9WotrJlDJqYzERnhnKRS3RBU/KWwJp9r307ZOkafRpWTGZWfNPVQdEKR1lnZcusIK8G2+rxrVtxEMSuK1z/wvP+de2aaEGNOI7jKIqDIPa8b9fXY8+LgyAWrFaPW5nZVkZZRVEUhmGv10vOUIRhGIZhFEWlR6lRbWXLGDQxmfX7fSQfTCYTUZIQtSCTmUYxmVUWrXBUm61smRXktai2SlfKCMM4itJ7/I3qQVUUrXAUx2BseDIrDUClZ8JEp1UX9Db7wWBQejVTVI1fzYxVXlfVVEnOQa7q6FVF0QpHtdnKlllBXm3uQVUUrXAUx2BscjITnQkrvXus1+uVbixabngFjsjJZBKKa2trS/J/k9re3q7cJgzD69evJ/9QfwcX3VaPHj26efPmh2fV7/c/BOr999+v3AZE/fKXv2wKRSsctVCr6XTa+NFuy6wgrxX4FpUXrXCUdVa2jEFnnqmDg4N5VU2n08pt5vP5/v6+HuratWvFpNXtdksJd+7cKU1m3W73s88+a9CqWCa0VbFaaPX73/9eNNJYrDq1s7PT7NEueWdfus3R0dH0rMbj8TRTpUwTxqA2ilY4ilY4agXGoHHnzEqv1klWKRPd+1X6pqY2/62girLF6sMPP1zMvMxqe/385z9v9mi35e91ednyzaCNohWOss7KljFoVjITrVImWdm/9HEBR3DfepuPSFWULVY8Z8ZaUN28ebPZo92WWUFetnwzaKNohaOss7JlDJqVzEoXwuh0OhLITLz4ajHPtfmIVEVZZHXz5s03M3Xt2rU3gfrZz35WuQ2Iev3115tC0QpHLdTqgw8+OM2uNd+mWUFeFn0z6KFohaOss7JlDJqVzEoz1iuvvCLniC5oFq+BtvmIVEXRCkfRCke12cqWWUFebe5BVRStcBTHYGxmMit9I5PjOLdu3ZJz8AuabT4iVVG0wlG0wlFttrJlVpBXm3tQFUUrHMUxGJuZzErfyOS6bqXVbDbrdrul4Sy31kabj0hVFK1wFK1wVJutbJkV5NXmHlRF0QpHcQzGBiazmeB2sSAIEKtLly6VJrPcKqltPiJVUbTCUbTCUW22smVWkFebe1AVRSscxTEYG5jMRFckJ5MJYnXjxg3kgmabj0hVFK1wFK1wVJutbJkV5NXmHlRF0QpHcQzGBiaz0rv4k1wFWome0Mxe0GzzEamKohWOohWOarOVLbOCvNrcg6ooWuEojsEsyohkJnojU7JaLGhVepua88M3NbX5iFRF0QpH0QpHtdnKlllBXm3uQVUUrXAUx2AWZUQyE73+cjKZ4FaiRztd100bdAWOyOFwKHmHutJ71uW1vr7ueZ7v+0kv1NlB60avKopWOKrNVrbMCvJqcw+qomiFozgGY9OSWemFyPQWMdxKdEEzfS33ChyRon1cXOWeotDYQRNG77Nnz05PT08y9cUXX5xU1VdffVW5zcnJyeeff94UilY4ygSr77//Hj/abZkV5LUC36LyohWOss7KljHoHGZqPB4fVtX+/n7lNoeHh3fv3gVRonNdQRCoWl25cqUUtba2pmpVWUtpq9u3by8yg5VX2nraO7iUtsrWw4cP7xVqb2+v+B9zNR6PK7e5d+/eaDRqCkUrHGWI1cHBAXi0X758WTQrpNvcv39fZAUe7aW19DFYWrTCUbTCUSswBpd/zqz0jUzZS5C4lei1m87ZhVHcqrKW0laj0WiRGay8St9AqrSDS/+76uTkZFaohw8fFv9jrqbTaeU2xb+r6qBohaMMsXry5Al4tNvy97q8bP8WrSxa4SjrrGwZg8tPZqWX57K37StZiS72JW9qsv2IZDLT68F///vfxQnVkHk9V7TCUYZY5V6vuQKzgrxs/xatLFrhKOusbBmDS05mokuZ/X5fz6r0DFwaL2w/Imfi17cvrrIpWW8HTRi9p6enT35Yf/zjH59U1Z/+9KfKbZ48efL55583haIVjjLB6uTk5D//+Q94tNsyK8jL9m/RyqIVjrLOypYxuORkJnojU7YJlKxEC3A4jhNF0Qockb1ezxVXp9OR/N+kut1u5Tau666trSX/MBwOa+6gdaNXFUUrHNVmK1tmBXm1uQdVUbTCURyDsTnJrPJSpoaV6KyS7/ttPiJVUbTCUbTCUW22smVWkFebe1AVRSscxTGYRS0zmb399tulESpd5ELPSrQ6muu6bT4iVVG0wlG0wlFttrJlVpBXm3tQFUUrHMUxGBuSzDY3N0URquYVOtEFzffee6+pHbTuiFRF0QpH0QpHtdnKlllBXm3uQVUUrXAUx2BsQjKbzWbdblcUoRZUP/7xj5vaQeuOSFUUrXAUrXBUm61smRXk1eYeVEXRCkdxDMYmJLMwDM85ljmOs7a2Jmpc1R207ohURdEKR9EKR7XZypZZQV5t7kFVFK1wFMdgbEIyk1xzXGhl1+Oos4PWHZGqKFrhKFrhqDZb2TIryKvNPaiKohWO4hiMl57MJGtbLLokq3Mp7aB1R6QqilY4ilY4qs1WtswK8mpzD6qiaIWjOAazKGeeqYODg3lVTafTym3m8/n+/r7k/169enVZycxxnDt37tTfwXNrKyUUrXAUrXAUrXCUxOrKlSuiWSHd5ujoaHpW4/F4mqkFWami2tyDqiha4SiOwSxqOefMRJcye71eWKitra3if8zV9vZ27r+I1s5IPqX+Dlr3t4IqilY4ilY4qs1Wtvy9Lq8296AqilY4imMwi1pCMhO9d9wVvJ9R20qU/0QfJEE1aFWsNo8TVRStcBStcBRnBRzV5h5URdEKR3EMxstNZqVvZJKcytK2kpw2i6JICdWgVbHaPE5UUbTCUbTCUZwVcFSbe1AVRSscxTEYLzeZiU5lTSaT0u21rWbi938HQaCEatCqWG0eJ6ooWuEoWuEozgo4qs09qIqiFY7iGIyXmMwGg4HqFcY6Vp7nqX7cqh6Rqiha4ShaRVGUfQ+H53mib7E2t5Uts4K82tyDqiha4SiOwXiJyUz1UmZNq36/L7qgORgMlFANWuWqzeNEFUUrHHWeVsWFo0ej0dKtcBRnBRzV5h5URdEKR3EMxstKZpLLi6JLmTWtJJ/o+74SqkGrXLV5nKiiaIWjmMxwFGcFHNXmHlRF0QpHcQzGy0pmojNY8ocla1qJztK5rlva0Kt6RKqiaIWjaMVkltYKzAryanMPqqJohaM4BuNlJTPRXV/yBcZqWonubHMEb2pa1SNSFUUrHEUrJrO0VmBWkFebe1AVRSscxTEYLyWZid7IJDp31aCV6IJm6ZuaVvWIVEXRCkfRisksrRWYFeTV5h5URdEKR3EMxktJZqLVxSpfZFnfSnRB0ym7v21Vj0hVFK1wFK2YzNJagVlBXm3uQVUUrXAUx2C8lGQmOnFVekmxWSvJBc3ihdRVPSJVUbTCUbRiMktrBWYFebW5B1VRtMJRHINZlHOcqQcPHhxX1cHBQeU2x8fH4/E4+6+3bt0qDUadTmdvb0+OasSq0+mIBFRRDVollWurOiha4Sha4ahKq62trdzI+vjjj5duhaPOx0ryNuV0m8PDw4dntbe39zBTC7JSRbW5B1VRtMJRHINZ1DmdMwuCoDQYVV7KbMpKJOAU3tS0qn8rqKJohaNoxXNmaUmsbPl7XV5t7kFVFK1wFMdgFnVOyUz7UmZTVqLXqDuFCynLnfcAABdXSURBVJqrekSqomiFo2jFZJbWCswK8mpzD6qiaIWjOAZjQ5JZt9sV7eoirERrduSWnF3VI1IVRSscRSsms7RWYFaQV5t7UBVFKxzFMRiffzIbDoe+73uZ6vV6d+7cQVBNWU0mkyAIvB9WEAS5xzNX9YhURdEKR9GKySytFZgV5NXmHlRF0QpHcQzG55/M6qBohaNohaNohaOYzHDUCswK8mpzD6qiaIWjOAZjJrP6KFrhKMOtRoVakJXoU0qt5KgGrRBUg8ns9u3b2UYo/bKraTWbzVL+7u6u5J28aXFWwFHt+Waoj6IVjuIYjJnM6qNohaMMtBoMBhcvXnRdt/QOyOS/B0Gws7NT02o2m/V6Pc/zut1u6af0er1sdDCwreImklkURUEQFFs7aYQwDOtbDQYD3/dL+9R1Xd/3B4OBCMVZAUcttK2SPD0YDMIwjKJoNBqBN72s9vdVvFyrySQejeLBIA7D5z+DQTwaxaORdW1lyxhkMtNE0QpHmWMVRVEyeRfTmKh83xcNSLnVbDYrzSKiT0nymTltla06yez09FSyZk02PA2HQz2rwWAger6n+Cm5FJgUZwUc1XhbpaldNFhc1/U8LwxDyUhcye+rbJ2z1d93duJeL/a82HVjxxH9PO10Ys+Le734h4tPLciqPWOQyUwTRSscZYgVkg9EE4Po2pzIajgcKuW/5FMGg4EhbZUr7WSm2g5BEKhaaXRrcRlFzgo4qsG22traUjo8knOfaYJfkJWZbXVOVlEU+748jQl/PC8uOy1tVFvZMgaZzDRRtMJRJlhJ3p0KTgmnp6egleRtYJV169YtvR2stKqD0ktmeu3Q6/VwK/BUWbFya+VwVsBRjbRVv99X/dMl1325Blmx76tiLdxqMIg9TyeQFfOZ1nIHHIMxk1l9FK1wlAlWxWmg0+kkl0iS21mSCsNQdLkzOZ1TaSVa07jb7fq+H56V6ELn1taW3g7KrWqiNJJZr9fL/ZfkmtSVK1fCMEzuvRPNzR999BFidfHixdJfT+7eS9p5e3u79INc182iOCvgqPptVfPPpLQHszcOrtj3VbEWaDUaNZPJ0h/XjRf2HBWCWoEx6MwzdXBwMK+q6XRauc18Pt/f328KRSscRSsRKnsD/ubm5ttvvy2xunPnzubmZm4m6Ha7n332WaVV8U5/x3G2t7dLrXZ2dq5evZrd8s0339TbQblVTVRlD25vb8vn0atXryatl7UqbWfHcV588cVKpdJP3Nzc3NnZKd3Bt99+O/tZ3W43u9n5tJXknX3pNkdHR9OzGo/H00wtyEoVVbOtSntcu9LuXrHvq2ItyOr/7tx51u02GcscJ3acZ93u47NvS6PaypYxyHNmmiha4SgTrJLLXp7npX9nV1oVr5SJXiaWWpWeKEpezCrZwSiK0s9amXNm2RbI3hhUtCq9UUzyHGUcx7PZrHgarPSkZm4H0w7iOTNtVJ220r76LKr0qvSKfV8Va1FWvg+dAyv+VP7WWdcY1Va2jEEmM00UrXCUCVaTySQ32VdaFW+Tyt2cVLQqxoX0Qyt3MAkov/71r+WbIaicVX2UdjIrPjxRalWcsIs36WermIBF2xd3MHkoIbc9ZwUctbh7PZO7C7LL3UVRJLoenR5gNa2KZUJbFWtRVpLrmK77/KHL4rE3m8WDQez7TzsdWTgbDDSt6u3gCoxBJjNNFK1wlL1WuUuTuRMtOat+v5+bNrJJDrGazWaWtlVpMit9prXUqvRZAckKscV5OhI8tG9UW9kyK8hLr60kZ1WTkSLvwZlgDRomMw1URTJz3TgI/g9bRu6vn34qy3aep2klqPaMQSYzTRStcJS9Vrl7YuTJrHjiJzvZrHZbFedd0VIjIqvipCu6dlyMcZITbEa1lS2zgrw02qr06nNapSvMlaKSfMZkVhMlTGauG5/1hZqVKJy5bjybGdVWtoxBJjNNFK1wlL1WeDIrzj25jVe7rYrJrPKevFwVL1CKrh0X70sTfVZsWFvZMivIS6OtJGvOSfpOZDUYDNKxloZyfl/hqB9YDQbpebI4szCQmtVsJrzzrN83qq1sGYNMZpooWuEoe63wZFY8kZO7IX2126r+G82Lq42IWruYgEXfmLFhbWXLrCAv1baSnDB75ZVX9KxGo1Fyijo938bvKxxVsmpG4ehStur1RM8BGNVWtoxBJjNNFK1wlL1WeDKrPGm02m1VP5lVnnRMC9wsKaPaypZZQV6qbSV5OgR52bzEKvvr/L7CUQuxmkxEt5oZ1Va2jEEmM00UrXCUvVZ4MiveZJaLJufTVpPJJF3M9vr162FVgWu6nkMyi7GTYaPRKPdB8qc4jTqubJkV5KXaVqITZmEY2vvNQKukfmBVekHTdY1qK1vGIJOZJopWOMpYqyiKkkX/k8fyi1X8K19kZUgyU10vqtvtNmK1iGRWCmEya9xKFaXUVpPJpPTAS2K3sd8MTaHaZVX6HACTGWBVRDGZaaJohaNMsxoMBr7vdzodpRDjqCSz4pZMZklJerAy3cZlyazX60nEjDrabZkV5KXUVqJLmUmeNu2bISla4Sgms0asiigmM00UrXCUOVbD4bDOKuRMZqJaYjLD11yQFGcFHKXUVqIDMuk1c74ZskUrHMVk1ohVEcVkpomiFY4yxEry6D5Y5iez4toT8trc3GzEisksrRWYFeSl1Faim8ySnjXkmyFXtMJRTGaNWBVRzmGmxuPxYVXt7+9XbnN4eHj37t2mULTCUbQSoUSxbH19PQiC995773ZZ/ehHP8puvLa2JrJaX1/Pbfm73/1OYwfrt9Xu7m4i/9FHH5XuVLaasrp+/XquYW/fvl26paQHc21YCrl9+3ZumytXrkjEjDraL1++LJoV0m3u379/76xGo9G9TC3IShWl1FZra2vFQZeOIxO+GYpFKxyVtfp2fb2YzL5fWzOqrWwZgzxnpomiFY5aulVxrSzHcS5evCh6IUxa1j2bmbNqCsVnM3HUCvy9Li+8rYqdlRtHlh7tOKpdVjxnpmtVRDGZaaJohaOWblWMTUEQLHrVjFzss6WtSmtZyay4DZNZ41aqqPrJLO0yS492HLUiVqNRPBjEYRiHYex52Z/vNjb+969cNUPXqohiMtNE0QpHLdeq+Nw+/lwYnsyKN3jl7n+yoq1EdQ7JrDiLc6XZhmeF4TB2XcnPs25XvkHc68UqbdXv95nMmkKds9Xfd3biIHje76IXliM/TGaAVRHFZKaJohWOWq5VcXrAnwvDk1nxU3LncqxoK1GdQzIrEkTvzUSWPUvLqLZa8qwgeu20yiwbq7SVfMkMeVup7uDKfF+J6pysZrPngazmocJkpmJVRDGZaaJohaOWayUKDc0ms+KZuZa/0Tz32tBKq+LlYNG7rn3fz20pWdLMqLZa8qzQyHQ7mTCZ4SibrBrPZExmsFURxWSmiaIVjmpDMovLzuVkL2ha0Vai0khmjmA9i1Kr0teZi74Hiy+Pl1zQNKqtViGZjUZMZjjKGqvkSnezmYzJDLYqopjMNFG0wlGmJbPkZEylFZ4AEqvirWbZeFG5g8Ph0HXdt956S3UHRbX0ZOY4zmAwQKyKp8Hk9/UXQ7DotFnpDgZBkOvKVswK9ade141nMyYzHGWH1WCgcAD88Odpp/O/f2Uy07UqopjMNFG0wlHLtSoGrOQGJrlV8bcqk9lsNismhnQSku9gOodtbGyo7qCoTEhmxcxUtCr93WKky1bp6nSlv5Lbwclkkl42zd6d1opZwffrJjPPi3mfmQrKAqvhsDqN9XpxFMWTSYUVV83QtSqimMw0UbTCUcu1Kg1Mg8FAYiWaUeTJLBYkBs/zZrOZaAejKMreYrV6ycxxHN/30y+1nFXpL1a+maC0T52yW9OyOxiGYfa3WpfM4vj5wgeCn39ub8s3SOZmPpuJo0y3Oj2VnUn1vLhqxUcms0asiigmM00UrXDU0q2KF8scx9na2ir+bi4n5aoymYkSg+u6V69ejaIoHduj0ajf7xc/azWSWXG/XNft9Xqjs7uUZrNZ8l750nbe2dmpVBK9h8rzvH6/n6auzz77LIqi5PJlbss2JjNpNX5ccaVZ062CQBTLvr16VdmKyUzXqohiMtNE0QpHLd2q9B0AyQzheV4YhmEY+r5fnLw3NzezIaMymcWCy6BZQlKiDd544w2NHay0qolSTWZhGIraYW1tTd4CvV4PtNrY2Khs6m63K/q/WRRnBRzFZIajTLcSnTALAh0rJjNdqyLKmWfq4OBgXlXT6bRym/l8vr+/3xSKVjiKViLU9va2ZBYvrc3Nzel0mn08s9vtIlY3btxQ/az0E01oq2JVWuWad3t7e67VDlevXlWyyj08C1a3271x40YWdT5tdeXKFdGskG5zdHQ0PavxeDzN1IKsVFFKbSVKxru7u0u0kldLrL65caM0ln2/ualn9f3mZpH2rNs1qq1sGYM8Z6aJohWOMsRKfi9UrpL71ufzueo5s6SSBy3xj3NdF1//1sAeLJ4zS/57FEVgO6QtoGolele9qDzPmxTuZebf6zhKqa1EvW/10Y6jjLYSXcrs9zWteM5M16qIYjLTRNEKR5ljFUVR6VXLbD7wfT995aV2Mksqd8u56BODIEjHvDltla1Kq9y93tmVzE5PT0tv88q1eTYtqVpVdqtzduVa9MgnZwUcpdRWolsJ8TekGXi04yijrUTvhBiNNK2YzHStiigmM00UrXCUaVaz2azf71+8eNHzvORuJM/zkjvHc2MvGaL9fj+5F614rgWxiqKo1+slt6xlPy4Mw6jw6JNpbZUUYrWzs5O0UnGn4rM2931/fX09bQTf94ttrm2VfkTazq7rbm5uBkFQ+inZ4qyAo5TaSvR4ZrLUn71H+ypYCYJUPJtpWjGZ6VoVUUxmmiha4Sha4Sha4SjrrGyZFeSl1FbFt5al1ev1rOtBVZTRVqW3/zOZmTEGmcw0UbTCUbTCUbTCUdZZ2TIryEu1rUTL0Liuu7e3p201mUx8308vT7f5uFJFLeRq5mgkinpGtZUtY5DJTBNFKxxFKxxFKxxlnZUts4K8VNtKdEHTcZyLFy/qWaVP2KS3frb5uFJFVSQzjScARLGMyQyzKqKYzDRRtMJRtMJRtMJR1lnZMivIS6OtJA9nBEGgapV9GpfJTAP13KrXK89SnqdmFUWyFwkwmQFWRRSTmSaKVjiKVjiKVjjKOitbZgV5abSVfMEaeTjLoobDYfHaaPIuhzYfV6qo51aSF5mHIYj6+1tvCSFMZrBVEcVkpomiFY6iFY6iFY6yzsqWWUFeem0lX9NEsqBJgpK8y2ui+DbPylp6W5XWQqzE57pO3n67gjKbSV7uxGSmZFVEMZlpomiFo2iFo2iFo6yzsmVWkJdeWw2HQ0kySy9N+r4f/rAuXbokXwyvjlVpLb2tSmshVmEoC1W+X/5G88kkDgLho51MZupWRRSTmSaKVjiKVjiKVjjKOitbZgV5abeV6CX0dSpZsbaOVbFMaKtiLcpKcotYGrY8738/ku09r+TeNSYzwKqIYjLTRNEKR9EKR9EKR1lnZcusIK86baX6Ki15ua6b3GRW0ypXhrRVrhZlFUXVVySRnyQiF0/CMZkBVkWUc5ypBw8eHFfVwcFB5TbHx8fj8bgpFK1wFK1wFK1wFK1wlMRK8jbldJvDw8OHZ7W3t/cwUwuyUkXVbKs33nijkVi2sbHx8ccfN2WVLXPaKluLs/rb++/XjGX/euWVBPXN1lbufz3tdIxqK1vGIM+ZaaJohaNohaNohaOss7Ll73V51W+rdDUy7VNl2RezNmWVllFtldZireQrX4h/nnY6yfpnz4vnzLSsiigmM00UrXAUrXAUrXCUdVa2zAryaqqtwjDsdDr1M1mzVrGRbRWfj1Wvp5DPXDcOgr/kXiXMZKZlVUQxmWmiaIWjaIWjaIWjrLOyZVaQV7NtFUVREATJ6+dL01i32/U8r9frRaXPCS7GqimUlVb9fux5z7pd2QMBZ+fJSqx6vf89LuD78XBoVFvZMgaZzDRRtMJRtMJRtMJR1lnZMivIa3FtNRqNRqNRv98Pw7Df7yf/unSrOii7rSaTeDSKoygOwzgM49EoPnveYplWQK3AGGQy00TRCkfRCkfRCkdZZ2XLrCCvNvegKopWOIpjMItiMtNE0QpH0QpH0QpHWWdly6wgrzb3oCqKVjiKYzCLYjLTRNEKR9EKR9EKR1lnZcusIK8296AqilY4imMwi2Iy00TRCkfRCkfRCkdZZ2XLrCCvNvegKopWOIpjMItiMtNE0QpH0QpH0QpHWWdly6wgrzb3oCqKVjiKYzCLYjLTRNEKR9EKR9EKR1lnZcusIK8296AqilY4imMwi2Iy00TRCkfRCkfRCkdZZ2XLrCCvNvegKopWOIpjMIty5pk6ODiYV9V0Oq3cZj6f7+/vN4WiFY6iFY6iFY6iFY6SWEne2Zduc3R0ND2r8Xg8zdSCrFRRbe5BVRStcBTHYBbFc2aaKFrhKFrhKFrhKOusbPl7XV5t7kFVFK1wFMdgFsVkpomiFY6iFY6iFY6yzsqWWUFebe5BVRStcBTHYBbFZKaJohWOohWOohWOss7KlllBXm3uQVUUrXAUx2AWxWSmiaIVjqIVjqIVjrLOypZZQV5t7kFVFK1wFMdgFsVkpomiFY6iFY6iFY6yzsqWWUFebe5BVRStcBTHYBbFZKaJohWOohWOohWOss7KlllBXm3uQVUUrXAUx2AWxWSmiaIVjqIVjqIVjrLOypZZQV5t7kFVFK1wFMdgFsVkpomiFY6iFY6iFY6yzsqWWUFebe5BVRStcBTHYBbFZKaJohWOohWOohWOss7KlllBXm3uQVUUrXDU+Vi9+uqrVoxBJjNNFK1wFK1wFK1wlHVWTGa5ohWOohWOkli98847pQPwtddey37K0scgk5kmilY4ilY4ilY4yjorJrNc0QpH0QpHSaw++eST0gH44YcfZj9l6WOQyUwTRSscRSscRSscZZ0Vk1muaIWjaIWj5Fa/+MUviifMvvvuu+ynLH0MOoeZGo/Hh1W1v79fuc3h4eHdu3ebQtEKR9EKR9EKR9EKR0msLl++LEpm6Tb379+/d1aj0ehephZkpYpqcw+qomiFo87T6le/+tVPfvKTCxcuvPzyy+++++6DBw+y/9eEMchzZpooWuEoWuEoWuEo66x4zixXtMJRtMJRNa1MGINMZpooWuEoWuEoWuEo66yYzHJFKxxFKxzFZCYsc1o5W7TCUbTCUbTCUW22YjLLFa1wFK1wFJOZsMxp5WzRCkfRCkfRCke12cqWtZTk1eYeVEXRCkeZY2XCGGQy00TRCkfRCkfRCkdZZ2XLWkryanMPqqJohaPMsTJhDDKZaaJohaNohaNohaOss7JlLSV5tbkHVVG0wlHmWJkwBpnMNFG0wlG0wlG0wlE2WlmxlpK8Wt6DSiha4ShzrEwYg0xmmiha4Sha4Sha4ShLrW7evPnTn/70woULr7766gcffJCNZbEZs4K82IM4ilY4yhwrE8Ygk5kmilY4ilY4ilY4aiWtTJgV5GVOW2WLVjiKVnLU119/vfQxyGSmiaIVjqIVjqIVjlpJKyYzPRStcBSt5Kh//OMfpWPw8ePH52bFZKaJohWOohWOohWOWkkrJjM9FK1wFK3kqG+//bZ0DJ6cnJyblTPP1MHBwbyqptNp5Tbz+Xx/f78pFK1wFK1wFK1wFK1wVE2ro6Oj6VmNx+NpppZolS1z2ipbtMJRtKpE/fnPf86NwS+++OKvf/3ruVnxnJkmilY4ilY4ilY4aiWt5jxnpoWiFY6iFYI6PT19/PjxvXv3vv7665OTk//+97/nacVkpomiFY6iFY6iFY5aSSsmMz0UrXAUrXDUsqyYzDRRtMJRtMJRtMJRK2nFZKaHohWOohWOYjITFq1wFK1wFK1wFK1w1Ao8sS8vc9oqW7TCUbTCUcuy+n+r3B0DKGVGBgAAAABJRU5ErkJggg==" alt="" width="516" height="144" />
程序如下:
leftCoeff[][] = p_polyE.x - p_polyS.x;
leftCoeff[][] = p_clipS.x - p_clipE.x;
leftCoeff[][] = p_polyE.y - p_polyS.y;
leftCoeff[][] = p_clipS.y - p_clipE.y; float deltM = leftCoeff[][]*leftCoeff[][] - leftCoeff[][]*leftCoeff[][];
//求矩阵的逆矩阵
if (deltM == )
return false; float nijuzhen[][];
nijuzhen[][] = leftCoeff[][]/deltM;
nijuzhen[][] = leftCoeff[][]/deltM;
nijuzhen[][] = -leftCoeff[][]/deltM;
nijuzhen[][] = -leftCoeff[][]/deltM;
2.
C++中的矩阵运算的更多相关文章
- python中numpy矩阵运算操作大全(非常全)!
python中numpy矩阵运算操作大全(非常全) //2019.07.10晚python矩阵运算大全1.矩阵的输出形式:对于任何一个矩阵,python输出的模板是:import numpy as n ...
- 用 python 解决线性代数中的矩阵运算
用 python 解决线性代数中的矩阵运算 矩阵叉乘 矩阵求逆 矩阵转置 假定AX=B,求解未知矩阵X 矩阵的行列式值|matrix| 未完待续..... import sys from PyQt5. ...
- python中的矩阵运算
摘自:http://m.blog.csdn.net/blog/taxueguilai1992/46581861 python的numpy库提供矩阵运算的功能,因此我们在需要矩阵运算的时候,需要导入nu ...
- c++矩阵运算库Eigen简介
C++矩阵运算库Eigen介绍 C++中的矩阵运算库常用的有Armadillo,Eigen,OpenCV,ViennaCL,PETSc等.我自己在网上搜了一下不同运算库的特点,最后选择了Eigen.主 ...
- 1.3eigen中数组类和系数的运算
1.3数组类和系数的运算 与矩阵类只适用与线性代数运算相反,数组类提供通用的数组类,能不利用线性代数的知识来对系数进行操作,比如对每个系数加上一个常数,或者乘上两个数组的系数. 1.数组类型 跟矩阵类 ...
- R语言编程艺术(2)R中的数据结构
本文对应<R语言编程艺术>第2章:向量:第3章:矩阵和数组:第4章:列表:第5章:数据框:第6章:因子和表 ======================================== ...
- MATLAB/Excel-如何将Excel数据导入MATLAB中
在使用MATLAB对矩阵进行数据处理时,为了方便编辑与修改,常常需要先将数据录入到Excel中,然后再将其导入到MATLAB中参与矩阵运算.本文在MATLAB 2013a和Office 2013环境下 ...
- WPF中Matrix介绍
最近在做一些图形变换操作的功能,图形变换涉及大学中的矩阵运算部分的知识,又重新复习了一下矩阵.这里做一下记录.由于不知道矩阵如何输入,一个个截图又麻烦,所以这里就全部用截图了^-^.
- Min Edit Distance
Min Edit Distance ----两字符串之间的最小距离 PPT原稿参见Stanford:http://www.stanford.edu/class/cs124/lec/med.pdf Ti ...
随机推荐
- 读《asp.net MVC4开发指南(黄保翕编著)》笔记
在刚刚过去的中秋节中,利用了两天的碎片时间把黄保翕编著的<asp.net MVC4 开发指南>看了遍,笔记如下,欢饮在开发MVC的同学一起来探讨: 1.社区 2.开源程序 3.易测试性 4 ...
- tomcat发布webservice
编写后台代码: package test; import javax.jws.WebParam; import javax.jws.WebService; @WebService public cla ...
- 'org.hibernate.SQLQuery' is deprecated
'org.hibernate.SQLQuery' is deprecated 在Hibernate5.2之后,SQLQuery已经被摒弃,改用NativeQuery代替了. 在Hibernate中使用 ...
- np.random.random()系列函数
1.np.random.random()函数参数 np.random.random((1000, 20)) 上面这个就代表生成1000行 20列的浮点数,浮点数都是从0-1中随机. 2.numpy.r ...
- 123. Best Time to Buy and Sell Stock III (Array; DP)
Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...
- Factorial Trailing Zeroes (Divide-and-Conquer)
QUESTION Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should ...
- Largest Rectangle in a Histogram(附上几组测试数据)
Largest Rectangle in a Histogram http://acm.hdu.edu.cn/showproblem.php?pid=1506 Time Limit: 2000/100 ...
- 使用VisualStudio开发php的图文设置方法[xyytit]
早先在asp横行的年代,php和asp一样,大都都是html中夹杂代码,说实话,这时候IDE的确用处不是很大,倒是类似于dw之类的设计器甚为上手. 现在,三层.mvc之类的思想遍地开花,使得代码和 ...
- TZOJ 2755 国际象棋(广搜+哈希)
描述 在n*n的国际象棋棋盘中,给定一“马(Knight)”和一“后(Queen)”的位置,问“马”能否在m步之内(包括m步)到达“后”的位置?马的走法是:每步棋先横走或直走一格,然后再斜走一格,即走 ...
- 13-matlab图片转化
图片格式: 处理函数: rgb2gray() gray2rgb()