By Jedidah Isler

# Background about our speaker

Jedidah Isler studies blazars(耀变天体) — supermassive hyperactive black holes(特大质量、极度活跃的黑洞) that emit powerful jet streams(喷流,喷气流). They are the universe’s most efficient particle accelerators(粒子加速器), transferring energy throughout galaxies(星系;银河系).

# Why you should listen

Jedidah Isler has been staring at the stars since she was 11 or 12. But because neither her undergraduate college or the university where she got her first master’s degree offered astronomy majors(天文学专业), she threw herself wholeheartedl(全心全意地)y into physics. It wasn’t until she entered a doctoral program that she was able to dedicate her time to the studying the night sky. In 2014, she became the first African-American(指美国黑人) woman to receive a Ph.D in Astrophysics(天体物理学) from Yale.

Isler studies blazars — supermassive hyperactive black holes at the center of galaxies, some of which emit powerful streams of particles. Sometimes these are oriented toward Earth, offering us a unique perspective on the physics of the universe. Isler is a Chancellor(校长(美国某些大学的)’s Faculty Fellow(教职研究员) in Physics at Syracuse University((美)雪域大学). She participates in the Future Faculty Leader program at Harvard's Center for Astrophysics and was named a 2015 TED Fellow.

Isler is also interested in breaking down barriers that prevent many students — especially women of color — from becoming scienists. She works to make STEM accessible to new communities.

注:STEM代表科学(Science),STEM技术(Technology),工程(Engineering),数学(Mathematics)。STEM教育就是科学,技术,工程,数学的教育。在国家实力的比较中,获得STEM学位的人数成为一个重要的指标。美国政府STEM计划是一项鼓励学生主修科学、技术、工程和数学(STEM)领域的计划,并不断加大科学、技术、工程和数学教育的投入,培养学生的科技理工素养。

# 视频地址

https://www.ted.com/talks/jedidah_isler_how_i_fell_in_love_with_quasars_blazars_and_our_incredible_universe/transcript?language=en#

Subtitles and Transcript

My first love was for the night sky. Love is complicated.

You're looking at a fly-through(漫游、飞越、行) of the Hubble Space Telescope Ultra-Deep Field, one of the most distant images of our universe ever observed. Everything you see here is a galaxy, comprised of billions of stars each. And the the farthest galaxy is a trillion, trillion kilometers away.

As an astrophysicist, I have the awesome privilege of(有…权限/特权) studying some of the most exotic (外来的;异国情调的;独特的)objects in our universe. The objects that have captivated me from first crush(第一个暗恋对象) throughout my career are supermassive, hyperactive black holes. Weighing one to 10 billion times the mass of our own sun,these galactic(银河的;乳汁的) black holes are devouring(vt. 吞食;毁灭;凝视) material, at a rate of upwards of 1,000 times more than your "average" supermassive black hole. (Laughter)

These two characteristics, with a few others, make them quasars(类星体). At the same time, the objects I study are producing some of the most powerful particle streams ever observed. These narrow streams, called jets, are moving at 99.99 percent of the speed of light, and are pointed directly at the Earth.

These jetted, Earth-pointed, hyperactive and supermassive black holes are called blazars, or blazing quasars. What makes blazars so special is that they're some of the universe's most efficient particle accelerators, transporting incredible amounts of energy throughout a galaxy.

Here, I'm showing an artist's conception of a blazar. The dinner plate by which material falls onto the black hole is called the accretion disc(吸积盘), shown here in blue. Some of that material is slingshotted(弹弓) around the black hole and accelerated to insanely high speeds in the jet, shown here in white.Although the blazar system is rare, the process by which nature pulls in material via a disk, and then flings(掷,抛) some of it out via a jet, is more common. We'll eventually zoom out of the blazar system to show its approximate relationship to the larger galactic context.

Beyond the cosmic accounting of what goes in to what goes out(?), one of the hot topics in blazar astrophysics right now is where the highest-energy jet emission comes from. In this image, I'm interested in where this white blob(一滴;一抹;难以名状的一团) forms and if, as a result, there's any relationship between the jet and the accretion disc material.

Clear answers to this question were almost completely inaccessible until 2008, when NASA launched a new telescope that better detects gamma ray light -- that is, light with energies a million times higher than your standard x-ray scan. I simultaneously compare variations between the gamma ray light data and the visible light data from day to day and year to year, to better localize these gamma ray blobs. My research shows that in some instances, these blobs form much closer to the black hole than we initially thought.

As we more confidently localize where these gamma ray blobs are forming, we can better understand how jets are being accelerated, and ultimately reveal the dynamic processes by which some of the most fascinating objects in our universe are formed.

This all started as a love story. And it still is. This love transformed me from a curious, stargazing(眺望星星;空想) young girl to a professional astrophysicist, hot on the heels of(紧接着) celestial(n. 神仙,天堂里的居民,adj. 天上的,天空的) discovery. Who knew that chasing after the universe would ground(打基础) me so deeply to my mission here on Earth. Then again, when do we ever know where love's first flutter will truly take us.

Thank you.

# Comments I like

You didn't want to nit-pick(挑剔;吹毛求疵;评头论足), but you did it anyway!

As an incurable(无可救药的) fellow nit-picker, I would like you to dumb it down(让它更蠢) for me (and for international readers) if you could. I know that the word "billion" means different things on different sides of the Atlantic, so maybe if you used all the zeroes in front of kilometers it could help me nit-pick along with you. And toss in the light-year-to-kilometer conversion too. (I'd ask you to use exponential notation, but it's not needed and it would exclude smart readers who haven't learned to read it.)

TED_Topic4:How I fell in love with quasars, blazars and our incredible universe的更多相关文章

  1. 词向量表示:word2vec与词嵌入

    在NLP任务中,训练数据一般是一句话(中文或英文),输入序列数据的每一步是一个字母.我们需要对数据进行的预处理是:先对这些字母使用独热编码再把它输入到RNN中,如字母a表示为(1, 0, 0, 0, ...

  2. WSL2:在Windows系统中开发Linux程序的又一神器

    作 者:道哥,10+年的嵌入式开发老兵. 公众号:[IOT物联网小镇],专注于:C/C++.Linux操作系统.应用程序设计.物联网.单片机和嵌入式开发等领域. 公众号回复[书籍],获取 Linux. ...

  3. The Sorrows of Young Werther

    The Sorrows of Young Werther J.W. von Goethe Thomas Carlyle and R.D. Boylan Edited by Nathen Haskell ...

  4. systemverilog assertion

    1.一般是单独写一个module 里面放assertion,  然后在验证平台顶层和RTL的实例化bind起来​ 2. |->表示直接进行判断,|=>表示下一拍判断,一般一个断言最好只写一 ...

  5. [转] ScalaTest测试框架

    [From] https://blog.csdn.net/hany3000/article/details/51033610 ScalaTest测试框架 2016年04月01日 02:49:35 阅读 ...

  6. mono3.2和monodevelop4.0在ubuntu12.04上两天的苦战

    首先第一步是设置ubuntu server 12.04版更新源,推荐中科大的比较快:deb http://debian.ustc.edu.cn/ubuntu/ precise main multive ...

  7. Scala Macros - 元编程 Metaprogramming with Def Macros

    Scala Macros对scala函数库编程人员来说是一项不可或缺的编程工具,可以通过它来解决一些用普通编程或者类层次编程(type level programming)都无法解决的问题,这是因为S ...

  8. Ubuntu14.04源

    Ubuntu14.04源:   来源: http://wiki.ubuntu.org.cn/Qref/Source (包含15.04.14.10.14.04.12.04.10.04的源)     Ub ...

  9. Ubuntu换源

    转自: http://wiki.ubuntu.org.cn/index.php?title=Qref/Source&variant=zh-cn 不同的网络状况连接以下源的速度不同, 建议在添加 ...

随机推荐

  1. vue 中使用better-scroll 遇到的问题

    以下是遇到问题以及解决方法 1.使用v-for 循环循环出来的列表,不能滚动. 原因是没有给wrapper 父层 加高度,当子层的高度大于父层的高度,才能滚动 打印scroll 对象,显示如此 竟然相 ...

  2. 利用css制作带边框的小三角

    标签(空格分隔):css 在项目中会使用到的小实例,目前知道的有两种方法来实现 设置元素的宽和高,利用rotate实现,比较简单的一种 div{ width: 10px; height: 10px; ...

  3. redis批量删除key 命令

    redis-cli -n 数据库编号 -a 密码 keys "过滤条件" | xargs redis-cli -n 数据库编号 -a 密码 del Demo: redis-cli ...

  4. XHTML和HTML、CSS 验证器

    XHTML 验证器和 CSS 验证器.需要这些工具去验证你的页面是否符合 XHTML 和 CSS 标准,并且可以使用它查出奇正错误的地方. XHTML 验证器 地址:http://validator. ...

  5. Windows 10 正式版原版ISO镜像

    Win10正式版32位简体中文版(含家庭版.专业版)文件名: cn_windows_10_multiple_editions_x86_dvd_6846431.isoSHA1:21B824F402927 ...

  6. MacOS & .DS_Store

    MacOS & .DS_Store .DS_Store === Desktop Services Store https://en.wikipedia.org/wiki/.DS_Store h ...

  7. Spring面试,IoC和AOP的理解, @Transactional原理及使用

    spring 的优点?1.降低了组件之间的耦合性 ,实现了软件各层之间的解耦 2.可以使用容易提供的众多服务,如事务管理,消息服务等 3.容器提供单例模式支持 4.容器提供了AOP技术,利用它很容易实 ...

  8. 【2018CCPC秦皇岛】

    递推式的线段树可以用矩阵维护.

  9. 【BZOJ4025】二分图(线段树分治,并查集)

    [BZOJ4025]二分图(线段树分治,并查集) 题面 BZOJ 题解 是一个二分图,等价于不存在奇环. 那么直接线段树分治,用并查集维护到达根节点的距离,只计算就好了. #include<io ...

  10. 【转】64位Ubuntu 16.04搭建嵌入式交叉编译环境arm-linux-gcc过程图解

    64位Ubuntu 16.04搭建嵌入式交叉编译环境arm-linux-gcc过程图解,开发裸机环境之前需要先搭建其开发环境,毕竟工欲善其事必先利其器嘛.  安装步骤 1.准备工具安装目录 下载 ar ...