使用OpenCL编程时,kernel写成一个单独的文件或者将文件内容保存在一个string中。可以使用clBuildProgram对kernel进行编译链接(compiles & links),如果失败,可以使用clGetProgramBuildInfo获取OpenCL编译器对kernel的编译信息。

1.clBuildProgram 

 cl_int clBuildProgram (

    cl_program program,  //program
    cl_uint num_devices,  //the number of device
    const cl_device_id *device_list,   //devices id
    const char *options,  //the option of compiler
    void (CL_CALLBACK *pfn_notify)(cl_program program, void *user_data),  //the callback function
    void *user_data)  //the data of callback function
  )

2.clGetProgramBuildInfo

  cl_int clGetProgramBuildInfo (

    cl_program program,   //program
    cl_device_id device,  //the id of device
    cl_program_build_info param_name,
    size_t param_value_size,
    void *param_value,
    size_t *param_value_size_ret
  )

3.代码实例(获取编译器对kernel的编译信息)

3.1 kernel(build_info_kernel.cl)

 __kernel void good(__global float *a,
__global float *b,
__global float *c) { *c = *a + *b;
} __kernel void good(__global float *a,
__global float *b,
__global float *c) {
__local int var=;
int size=get_local_sze();
*c = *a + *b;
}

3.2 tool.h

 #ifndef TOOLH
#define TOOLH
#include <CL/cl.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <string>
#include <fstream>
using namespace std; /** convert the kernel file into a string */
int convertToString(const char *filename, std::string& s); /**Getting platforms and choose an available one.*/
int getPlatform(cl_platform_id &platform); /**Step 2:Query the platform and choose the first GPU device if has one.*/
cl_device_id *getCl_device_id(cl_platform_id &platform); /**获取编译program出错时,编译器的出错信息*/
int getProgramBuildInfo(cl_program program,cl_device_id device);
#endif

    tool.cpp

 #include <CL/cl.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <string>
#include <fstream>
#include "tool.h"
using namespace std; /** convert the kernel file into a string */
int convertToString(const char *filename, std::string& s)
{
size_t size;
char* str;
std::fstream f(filename, (std::fstream::in | std::fstream::binary)); if(f.is_open())
{
size_t fileSize;
f.seekg(, std::fstream::end);
size = fileSize = (size_t)f.tellg();
f.seekg(, std::fstream::beg);
str = new char[size+];
if(!str)
{
f.close();
return ;
} f.read(str, fileSize);
f.close();
str[size] = '\0';
s = str;
delete[] str;
return ;
}
cout<<"Error: failed to open file\n:"<<filename<<endl;
return -;
} /**Getting platforms and choose an available one.*/
int getPlatform(cl_platform_id &platform)
{
platform = NULL;//the chosen platform cl_uint numPlatforms;//the NO. of platforms
cl_int status = clGetPlatformIDs(, NULL, &numPlatforms);
if (status != CL_SUCCESS)
{
cout<<"Error: Getting platforms!"<<endl;
return -;
} /**For clarity, choose the first available platform. */
if(numPlatforms > )
{
cl_platform_id* platforms =
(cl_platform_id* )malloc(numPlatforms* sizeof(cl_platform_id));
status = clGetPlatformIDs(numPlatforms, platforms, NULL);
platform = platforms[];
free(platforms);
}
else
return -;
} /**Step 2:Query the platform and choose the GPU device*/
cl_device_id *getCl_device_id(cl_platform_id &platform)
{
cl_uint numDevices = ;
cl_device_id *devices=NULL;
cl_int status = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, , NULL, &numDevices);
if (numDevices > ) //GPU available.
{
devices = (cl_device_id*)malloc(numDevices * sizeof(cl_device_id));
status = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, numDevices, devices, NULL);
}
return devices;
} /**获取编译program出错时,编译器的出错信息*/
int getProgramBuildInfo(cl_program program,cl_device_id device)
{
size_t log_size;
char *program_log;
/* Find size of log and print to std output */
clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG,
, NULL, &log_size);
program_log = (char*) malloc(log_size+);
program_log[log_size] = '\0';
clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG,
log_size+, program_log, NULL);
printf("%s\n", program_log);
free(program_log);
return ;
}

3.3 buildInfo.cpp

 #include "tool.h"
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <string>
#include <fstream>
using namespace std; void CL_CALLBACK checkData(cl_program platform, void* data){
printf("%s\n",(char*)data);
} int main(int argc, char* argv[])
{
cl_int status;
/** Getting platforms and choose an available one(first).*/
cl_platform_id platform;
getPlatform(platform); /**Query the platform and choose the GPU device.*/
cl_device_id *devices=getCl_device_id(platform); /**Create context use the frist device.*/
cl_context context = clCreateContext(NULL,, devices,NULL,NULL,NULL); /**Create program object */
const char *filename = "build_info_kernel.cl";
string sourceStr;
status = convertToString(filename, sourceStr);
const char *source = sourceStr.c_str();
size_t sourceSize[] = {strlen(source)};
cl_program program = clCreateProgramWithSource(context, , &source, sourceSize, NULL); /**Build program. */
//status=clBuildProgram(program, 1,devices,NULL,checkData,"sdf");
status=clBuildProgram(program, ,devices,NULL,NULL,NULL);
if(status < ) //get the build info
getProgramBuildInfo(program ,devices[]);
else
printf("Build Success\n"); status = clReleaseProgram(program); //Release the program object.
status = clReleaseContext(context);//Release context.
free(devices); getchar();
return ;
}

对kernel的编译结果:

GPGPU OpenCL 获取kernel函数编译信息的更多相关文章

  1. GPGPU OpenCL 获取设备信息

    在使用OpenCL编程中,需要对GPU设备的底层理解,这样才能更好的进行代码优化. 比如计算单元CU数量,每个CU的执行单元PE数量,每个CU中的共享内存大小等等.只有了解了这些才能更好的使用共享内存 ...

  2. Linux Kernel ‘mp_get_count()’函数本地信息泄露漏洞

    漏洞名称: Linux Kernel ‘mp_get_count()’函数本地信息泄露漏洞 CNNVD编号: CNNVD-201311-054 发布时间: 2013-11-06 更新时间: 2013- ...

  3. python装饰器内获取函数有用信息方法

    装饰器内获取函数有用信息方法 .__doc__用于得到函数注释信息 .__name_用于得到函数名 在函数引用装饰器的时候,函数名会变为装饰器内部执行该函数的名字,所有在直接执行函数名加.__doc_ ...

  4. QMetaMethod 获取成员函数的元信息

    在上一篇中,我们将的是QMetaEnum类,它可以获得一个类中由Q_ENUM宏或Q_FLAG宏声明的枚举类型的元信息.同样,QMetaMethod类是用来获取成员方法的元信息的一个类.通过该类,我们可 ...

  5. C/C++通过WMI和系统API函数获取获取系统硬件配置信息

    转载:http://www.cnblogs.com/renyuan/archive/2012/12/29/2838716.html 转载:http://blog.csdn.net/jhqin/arti ...

  6. 【并行计算-CUDA开发】GPGPU OpenCL/CUDA 高性能编程的10大注意事项

    GPGPU OpenCL/CUDA 高性能编程的10大注意事项 1.展开循环 如果提前知道了循环的次数,可以进行循环展开,这样省去了循环条件的比较次数.但是同时也不能使得kernel代码太大. 循环展 ...

  7. GPGPU OpenCL/CUDA 高性能编程的10大注意事项

    转载自:http://hc.csdn.net/contents/content_details?type=1&id=341 1.展开循环 如果提前知道了循环的次数,可以进行循环展开,这样省去了 ...

  8. kernel(一)编译体验

    目录 打补丁 配置 总结 配置方式 配置体验 配置详解 Makefile解析 子目录的Makefile 架构下面的Makefile 顶层Makefile Make解析 编译 链接 链接脚本 烧写内核 ...

  9. make V=1 查看完整的gcc编译信息

    Linux内核make命令选项 2012年5月28日lenky发表评论阅读评论6,289 次浏览   升级Linux内核的操作已经变得很简单,基本的几个命令即可搞定:make menuconfig.m ...

随机推荐

  1. mysql 存储过程详解

    MySQL 存储过程是从 MySQL 5.0 开始增加的新功能.存储过程的优点有一箩筐.不过最主要的还是执行效率和SQL 代码封装.特别是 SQL 代码封装功能,如果没有存储过程,在外部程序访问数据库 ...

  2. hdu-5023线段树刷题

    title: hdu-5023线段树刷题 date: 2018-10-18 13:32:13 tags: acm 刷题 categories: ACM-线段树 概述 这道题和上次做的那道染色问题一样, ...

  3. ubuntu下安装和破解navicat的方法

    ubuntu下安装和破解navicat的方法 之前我也在苦苦搜寻ubuntu完美破解navicat的方法,但是大家都说是删除掉~/.Navicat,就可以续用,的确是这样,但是很麻烦. 于是我找到了一 ...

  4. 理解事件(Event)

    Overview 在前几章,我们已经对委托有了一个完整的了解了,本章将会对事件进行一下介绍: 相对于委托,事件再是我们更加频繁的接触的,比如 鼠标的click 事件,键盘的 keydown 事件等等. ...

  5. 安装部署VMware vSphere 5.5文档 (6-6) 集群和vMotion

    部署VMware vSphere 5.5 实施文档 ########################################################################## ...

  6. 【转】高效率编辑器VIM

    最近实习的时候需要在服务器上做Debug,不得不用到vim的相关操作.以前对vim这种被码农无数赞扬的神器望而却步,但今天试了之后感觉还是不错的.以后争取少用鼠标,少用insert模式. 这是从网上看 ...

  7. type与instance区别

    class Foo(object): pass class Bar(Foo): pass obj = Bar() # isinstance用于判断,对象是否是指定类或其派生类的实例 print(isi ...

  8. sgu 176 上下界网络流最小可行流带输出方案

    算法步骤: 1. 先将原图像最大可行流那样变换,唯一不同的是不加dst->src那条边来将它变成无源无汇的网络流图.直接跑一边超级源到超级汇的最大流. 2. 加上刚才没有加上的那条边p 3. 再 ...

  9. PAT甲级1131. Subway Map

    PAT甲级1131. Subway Map 题意: 在大城市,地铁系统对访客总是看起来很复杂.给你一些感觉,下图显示了北京地铁的地图.现在你应该帮助人们掌握你的电脑技能!鉴于您的用户的起始位置,您的任 ...

  10. Go语言Web框架gwk介绍 (二)

    HttpResult 凡是实现了HttpResult接口的对象,都可以作为gwk返回Web客户端的内容.HttpResult接口定义非常简单,只有一个方法: type HttpResult inter ...