Reading lists for new LISA students(转)
Research in General
Basics of machine learning
Basics of deep learning
Practical recommendations for gradient-based training of deep architectures
Quick’n’dirty introduction to deep learning: Advances in Deep Learning
Contractive auto-encoders: Explicit invariance during feature extraction
An Analysis of Single Layer Networks in Unsupervised Feature Learning
The importance of Encoding Versus Training With Sparse Coding and Vector Quantization
Feedforward nets
“Improving Neural Nets with Dropout” by Nitish Srivastava
“What is the best multi-stage architecture for object recognition?”
MCMC
Radford Neal’s Review Paper (old but still very comprehensive)
Restricted Boltzmann Machines
Unsupervised learning of distributions of binary vectors using 2-layer networks
Training restricted Boltzmann machines using approximations to the likelihood gradient
Tempered Markov Chain Monte Carlo for training of Restricted Boltzmann Machine
Enhanced Gradient for Training Restricted Boltzmann Machines
Using fast weights to improve persistent contrastive divergence
Training Products of Experts by Minimizing Contrastive Divergence
Boltzmann Machines
Deep Boltzmann Machines (Salakhutdinov & Hinton)
A Two-stage Pretraining Algorithm for Deep Boltzmann Machines
Regularized Auto-Encoders
Regularization
Stochastic Nets & GSNs
Others
Slow, Decorrelated Features for Pretraining Complex Cell-like Networks
What Regularized Auto-Encoders Learn from the Data Generating Distribution
Recurrent Nets
Learning long-term dependencies with gradient descent is difficult
Learning recurrent neural networks with Hessian-free optimization
On the importance of momentum and initialization in deep learning,
Long short-term memory (Hochreiter & Schmidhuber)
Long Short-Term Memory in Echo State Networks: Details of a Simulation Study
The "echo state" approach to analysing and training recurrent neural networks
Backpropagation-Decorrelation: online recurrent learning with O(N) complexity
New results on recurrent network training:Unifying the algorithms and accelerating convergence
Convolutional Nets
ImageNet Classification with Deep Convolutional Neural Networks, Alex Krizhevsky, Ilya Sutskever, Geoffrey E Hinton, NIPS 2012.
Optimization issues with DL
Knowledge Matters: Importance of Prior Information for Optimization
Practical recommendations for gradient-based training of deep architectures
Hessian Free
Natural Gradient (TONGA)
NLP + DL
Distributed Representations of Words and Phrases and their Compositionality
Dynamic Pooling and Unfolding Recursive Autoencoders for Paraphrase Detection
CV+RBM
CV + DL
Scaling Up
DL + Reinforcement learning
Graphical Models Background
An Introduction to Graphical Models (Mike Jordan, brief course notes)
A View of the EM Algorithm that Justifies Incremental, Sparse and Other Variants (Neal & Hinton, important paper to the modern understanding of Expectation-Maximization)
A Unifying Review of Linear Gaussian Models (Roweis & Ghahramani, ties together PCA, factor analysis, hidden Markov models, Gaussian mixtures, k-means, linear dynamical systems)
An Introduction to Variational Methods for Graphical Models (Jordan et al, mean-field, etc.)
Writing
Software documentation
Python, Theano, Pylearn2, Linux (bash) (at least the 5 first sections), git (5 first sections), github/contributing to it (Theano doc), vim tutorial or emacs tutorial
Software lists of built-in commands/functions
Other Software stuff to know about:
screen
ssh
ipython
matplotlib
Reading lists for new LISA students(转)的更多相关文章
- Reading Lists
* Non-academic 1. Slowing Down to the Speed of Life, by Richard Carlson and Joseph Bailey.2. Your Mo ...
- deep learning 的综述
从13年11月初开始接触DL,奈何boss忙or 各种问题,对DL理解没有CSDN大神 比如 zouxy09等 深刻,主要是自己觉得没啥进展,感觉荒废时日(丢脸啊,这么久....)开始开文,即为记录自 ...
- 深度学习阅读列表 Deep Learning Reading List
Reading List List of reading lists and survey papers: Books Deep Learning, Yoshua Bengio, Ian Goodfe ...
- Reading With Purpose: A grand experiment
Reading With Purpose: A grand experiment This is the preface to a set of notes I'm writing for a sem ...
- Deep Learning 和 Knowledge Graph howto
领军大家: Geoffrey E. Hinton http://www.cs.toronto.edu/~hinton/ 阅读列表: reading lists and survey papers fo ...
- Courses on Turbulence
Courses on Turbulence Table of Contents 1. Lecture 1.1. UIUC Renewable energy and turbulent environm ...
- The Ph.D. Grind
The Ph.D. Grind A Ph.D. Student Memoir Summary The Ph.D. Grind, a 122-page e-book, is the first know ...
- QuantStart量化交易文集
Over the last seven years more than 200 quantitative finance articles have been written by members o ...
- Teen Readers【青少年读者】
Teen Readers Teens and younger children are reading a lot less for fun, according to a Common Sense ...
随机推荐
- Python 控制流、列表生成式
Python的三种控制流.认识分支结构if.认识循环结构while.认识循环结构for.Break语句.Continue语句.
- Python练习-一辆购物车的寂寞都是Alex的错
Alex大神的购物车需求: 商品列表,选择商品后加入购物车,扣款显示余额,如余额不足则提示购买此商品还需充值的金额,退出后自动结账显示余额; # 编辑者:闫龙 #弱鸡购物车程序,需求:定义金额,选择商 ...
- Sysmon + NXlog构建简单的windows安全监控
工具: Sysmon (sysmon 5.0) ,NXlog(nxlog-ce-2.9.1716.msi) . Sysmon监控系统并生成windows event log, NXlog将wind ...
- xmlHttpRequest 跨域和上传或下载进度条
跨域 XMLHttpRequest 请求 普通网页能够使用XMLHttpRequest对象发送或者接受服务器数据, 但是它们受限于同源策略. 扩展可以不受该限制. 任何扩展只要它先获取了跨域请求许可, ...
- mysql基准测试工具tpcc-mysql安装、使用、结果解读
TPCC是专门针对联机交易处理系统(OLTP系统)的规范,一般情况下我们也把这类系统称为业务处理系统,tpcc-mysql是percona基于TPC-C(下面简写成TPCC)衍生出来的产品,专用于My ...
- RedisTemplate使用
RedisTemplate中定义了对5种数据结构操作 redisTemplate.opsForValue();//操作字符串 redisTemplate.opsForHash();//操作hash r ...
- GitHub安装和使用
GitHub是一个基于git的代码托管平台,付费用户可以建私人仓库,一般的免费用户只能使用公共仓库,也就是代码要公开. Github 由Chris Wanstrath, PJ Hyett 与Tom P ...
- 学习总结——JMeter做http接口功能测试
JMeter对各种类型接口的测试 默认做接口测试前,已经给出明确的接口文档(如,http://test.nnzhp.cn/wiki/index.php?doc-view-59):本地配好了JMeter ...
- Description Resource Path Location Type The superclass "javax.servlet.http.HttpServlet" was not foun
一段时间没亲自建新项目玩乐,今天建立了一Maven project的时候发现了以下异常,Description Resource Path Location Type The superclass & ...
- CF1030A 【In Search of an Easy Problem】
题目巨简单,主要是给大家翻译一下 给n个数,其中存在1就输出HARD,否则输出EASY,不区分大小写 #include<iostream> #include<cstdio> u ...