Docker是开源的应用容器引擎。若想简单了解一下,可以参考百度百科词条Docker。好像只支持64位系统。

Docker官网:https://www.docker.com/

Docker — 从入门到实践:https://yeasy.gitbooks.io/docker_practice/content/

Pdf版下载:http://download.csdn.net/detail/zhangrelay/9743400

caffe官网:http://caffe.berkeleyvision.org/installation.html

caffe_docker:https://github.com/BVLC/caffe/tree/master/docker

然后参考这篇博客就可以了:http://blog.csdn.net/sysushui/article/details/54585788

看右图数据,准确识别出是磁罗盘(>0.8)

如: docker search caffe

$ docker search caffe
NAME                                  DESCRIPTION                                     STARS     OFFICIAL   AUTOMATED
kaixhin/caffe                         Ubuntu Core 14.04 + Caffe.                      33                   [OK]
kaixhin/cuda-caffe                    Ubuntu Core 14.04 + CUDA + Caffe.               30                   [OK]
neowaylabs/caffe-cpu                  Caffe CPU based on:  https://hub.docker.co...   4                    [OK]
kaixhin/caffe-deps                    `kaixhin/caffe` dependencies.                   1                    [OK]
mbartoli/caffe                        Caffe, CPU-only                                 1                    [OK]
drunkar/cuda-caffe-anaconda-chainer   cuda-caffe-anaconda-chainer                     1                    [OK]
kaixhin/cuda-caffe-deps               `kaixhin/cuda-caffe` dependencies.              0                    [OK]
mtngld/caffe-gpu                      Ubuntu + caffe (gpu ready)                      0                    [OK]
nitnelave/caffe                       Master branch of BVLC/caffe, on CentOS7 wi...   0                    [OK]
bvlc/caffe                            Official Caffe images                           0                    [OK]
ruimashita/caffe-gpu                  ubuntu 14.04 cuda 7 (NVIDIA driver version...   0                    [OK]
ruimashita/caffe-cpu-with-models      ubuntu 14.04 caffe  bvlc_reference_caffene...   0                    [OK]
elezar/caffe                          Caffe Docker Images                             0                    [OK]
ruimashita/caffe-gpu-with-models      ubuntu 14.04 cuda 7.0 caffe  bvlc_referenc...   0                    [OK]
floydhub/caffe                        Caffe docker image                              0                    [OK]
namikister/caffe                      Caffe with CUDA 8.0                             0                    [OK]
tingtinglu/caffe                      caffe                                           0                    [OK]
djpetti/caffe                         A simple container with Caffe, CUDA, and C...   0                    [OK]
flyingmouse/caffe                     Caffe is a deep learning framework made wi...   0                    [OK]
ruimashita/caffe-cpu                  ubuntu 14.04 caffe                              0                    [OK]
suyongsun/caffe-gpu                   Caffe image with gpu mode.                      0                    [OK]
haoyangz/caffe-cnn                    caffe-cnn                                       0                    [OK]
2breakfast/caffe-sshd                 installed sshd server on nvidia/caffe           0                    [OK]
chakkritte/docker-caffe               Docker caffe                                    0                    [OK]
ederrm/caffe                          Caffe http://caffe.berkeleyvision.org setup!    0                    [OK]
relaybot@relaybot-desktop:~$

选择安装即可,caffe安装CPU版本还是比较容易的。

安装完毕测试,这是在ros kinetic版本测试,和ros indigo一样。

具体请参考:

ROS + Caffe 机器人操作系统框架和深度学习框架笔记 (機器人控制與人工智能)

http://blog.csdn.net/zhangrelay/article/details/54669922

$ roscore
... logging to /home/relaybot/.ros/log/f214a97a-e0b1-11e6-833d-70f1a1ca7552/roslaunch-relaybot-desktop-32381.log
Checking log directory for disk usage. This may take awhile.
Press Ctrl-C to interrupt
Done checking log file disk usage. Usage is <1GB.

started roslaunch server http://relaybot-desktop:44408/
ros_comm version 1.12.6

SUMMARY
========

PARAMETERS
 * /rosdistro: kinetic
 * /rosversion: 1.12.6

NODES

auto-starting new master
process[master]: started with pid [32411]
ROS_MASTER_URI=http://relaybot-desktop:11311/

setting /run_id to f214a97a-e0b1-11e6-833d-70f1a1ca7552
process[rosout-1]: started with pid [32424]
started core service [/rosout]

$ rosrun uvc_camera uvc_camera_node
[ INFO] [1485096579.984543774]: using default calibration URL
[ INFO] [1485096579.984671839]: camera calibration URL: file:///home/relaybot/.ros/camera_info/camera.yaml
[ INFO] [1485096579.984939036]: Unable to open camera calibration file [/home/relaybot/.ros/camera_info/camera.yaml]
[ WARN] [1485096579.984987494]: Camera calibration file /home/relaybot/.ros/camera_info/camera.yaml not found.
opening /dev/video0
pixfmt 0 = 'YUYV' desc = 'YUYV 4:2:2'
  discrete: 640x480:   1/30 1/15
  discrete: 352x288:   1/30 1/15
  discrete: 320x240:   1/30 1/15
  discrete: 176x144:   1/30 1/15
  discrete: 160x120:   1/30 1/15
  discrete: 1280x800:   2/15
  discrete: 1280x1024:   2/15
  int (Brightness, 0, id = 980900): -64 to 64 (1)
  int (Contrast, 0, id = 980901): 0 to 64 (1)
  int (Saturation, 0, id = 980902): 0 to 128 (1)
  int (Hue, 0, id = 980903): -40 to 40 (1)
  bool (White Balance Temperature, Auto, 0, id = 98090c): 0 to 1 (1)
  int (Gamma, 0, id = 980910): 72 to 500 (1)
  menu (Power Line Frequency, 0, id = 980918): 0 to 2 (1)
    0: Disabled
    1: 50 Hz
    2: 60 Hz
  int (Sharpness, 0, id = 98091b): 0 to 6 (1)
  int (Backlight Compensation, 0, id = 98091c): 0 to 2 (1)
select timeout in grab
^Crelaybot@relaybot-desktop:~$ rosrun uvc_camera uvc_camera_node topic:=/camera/b/image_raw
[ INFO] [1485096761.665718381]: using default calibration URL
[ INFO] [1485096761.665859706]: camera calibration URL: file:///home/relaybot/.ros/camera_info/camera.yaml
[ INFO] [1485096761.665944994]: Unable to open camera calibration file [/home/relaybot/.ros/camera_info/camera.yaml]
[ WARN] [1485096761.665980436]: Camera calibration file /home/relaybot/.ros/camera_info/camera.yaml not found.
opening /dev/video0
pixfmt 0 = 'YUYV' desc = 'YUYV 4:2:2'
  discrete: 640x480:   1/30 1/15
  discrete: 352x288:   1/30 1/15
  discrete: 320x240:   1/30 1/15
  discrete: 176x144:   1/30 1/15
  discrete: 160x120:   1/30 1/15
  discrete: 1280x800:   2/15
  discrete: 1280x1024:   2/15
  int (Brightness, 0, id = 980900): -64 to 64 (1)
  int (Contrast, 0, id = 980901): 0 to 64 (1)
  int (Saturation, 0, id = 980902): 0 to 128 (1)
  int (Hue, 0, id = 980903): -40 to 40 (1)
  bool (White Balance Temperature, Auto, 0, id = 98090c): 0 to 1 (1)
  int (Gamma, 0, id = 980910): 72 to 500 (1)
  menu (Power Line Frequency, 0, id = 980918): 0 to 2 (1)
    0: Disabled
    1: 50 Hz
    2: 60 Hz
  int (Sharpness, 0, id = 98091b): 0 to 6 (1)
  int (Backlight Compensation, 0, id = 98091c): 0 to 2 (1)
select timeout in grab

rosrun topic_tools transform /image_raw /camera/rgb/image_raw sensor_msgs/Image 'm'

$ rosrun ros_caffe ros_caffe_test

WARNING: Logging before InitGoogleLogging() is written to STDERR

I0122 23:02:21.915738  2968 upgrade_proto.cpp:67] Attempting to upgrade input file specified using deprecated input fields: /home/relaybot/Rob_Soft/caffe/src/ros_caffe/data/deploy.prototxt

I0122 23:02:21.915875  2968 upgrade_proto.cpp:70] Successfully upgraded file specified using deprecated input fields.

W0122 23:02:21.915894  2968 upgrade_proto.cpp:72] Note that future Caffe releases will only support input layers and not input fields.

I0122 23:02:21.916246  2968 net.cpp:53] Initializing net from parameters:

name: "CaffeNet"

state {

phase: TEST

level: 0

}

layer {

name: "input"

type: "Input"

top: "data"

input_param {

shape {

dim: 10

dim: 3

dim: 227

dim: 227

}

}

}

layer {

name: "conv1"

type: "Convolution"

bottom: "data"

top: "conv1"

convolution_param {

num_output: 96

kernel_size: 11

stride: 4

}

}

layer {

name: "relu1"

type: "ReLU"

bottom: "conv1"

top: "conv1"

}

layer {

name: "pool1"

type: "Pooling"

bottom: "conv1"

top: "pool1"

pooling_param {

pool: MAX

kernel_size: 3

stride: 2

}

}

layer {

name: "norm1"

type: "LRN"

bottom: "pool1"

top: "norm1"

lrn_param {

local_size: 5

alpha: 0.0001

beta: 0.75

}

}

layer {

name: "conv2"

type: "Convolution"

bottom: "norm1"

top: "conv2"

convolution_param {

num_output: 256

pad: 2

kernel_size: 5

group: 2

}

}

layer {

name: "relu2"

type: "ReLU"

bottom: "conv2"

top: "conv2"

}

layer {

name: "pool2"

type: "Pooling"

bottom: "conv2"

top: "pool2"

pooling_param {

pool: MAX

kernel_size: 3

stride: 2

}

}

layer {

name: "norm2"

type: "LRN"

bottom: "pool2"

top: "norm2"

lrn_param {

local_size: 5

alpha: 0.0001

beta: 0.75

}

}

layer {

name: "conv3"

type: "Convolution"

bottom: "norm2"

top: "conv3"

convolution_param {

num_output: 384

pad: 1

kernel_size: 3

}

}

layer {

name: "relu3"

type: "ReLU"

bottom: "conv3"

top: "conv3"

}

layer {

name: "conv4"

type: "Convolution"

bottom: "conv3"

top: "conv4"

convolution_param {

num_output: 384

pad: 1

kernel_size: 3

group: 2

}

}

layer {

name: "relu4"

type: "ReLU"

bottom: "conv4"

top: "conv4"

}

layer {

name: "conv5"

type: "Convolution"

bottom: "conv4"

top: "conv5"

convolution_param {

num_output: 256

pad: 1

kernel_size: 3

group: 2

}

}

layer {

name: "relu5"

type: "ReLU"

bottom: "conv5"

top: "conv5"

}

layer {

name: "pool5"

type: "Pooling"

bottom: "conv5"

top: "pool5"

pooling_param {

pool: MAX

kernel_size: 3

stride: 2

}

}

layer {

name: "fc6"

type: "InnerProduct"

bottom: "pool5"

top: "fc6"

inner_product_param {

num_output: 4096

}

}

layer {

name: "relu6"

type: "ReLU"

bottom: "fc6"

top: "fc6"

}

layer {

name: "drop6"

type: "Dropout"

bottom: "fc6"

top: "fc6"

dropout_param {

dropout_ratio: 0.5

}

}

layer {

name: "fc7"

type: "InnerProduct"

bottom: "fc6"

top: "fc7"

inner_product_param {

num_output: 4096

}

}

layer {

name: "relu7"

type: "ReLU"

bottom: "fc7"

top: "fc7"

}

layer {

name: "drop7"

type: "Dropout"

bottom: "fc7"

top: "fc7"

dropout_param {

dropout_ratio: 0.5

}

}

layer {

name: "fc8"

type: "InnerProduct"

bottom: "fc7"

top: "fc8"

inner_product_param {

num_output: 1000

}

}

layer {

name: "prob"

type: "Softmax"

bottom: "fc8"

top: "prob"

}

I0122 23:02:21.916574  2968 layer_factory.hpp:77] Creating layer input

I0122 23:02:21.916613  2968 net.cpp:86] Creating Layer input

I0122 23:02:21.916638  2968 net.cpp:382] input -> data

I0122 23:02:21.931437  2968 net.cpp:124] Setting up input

I0122 23:02:21.939075  2968 net.cpp:131] Top shape: 10 3 227 227 (1545870)

I0122 23:02:21.939122  2968 net.cpp:139] Memory required for data: 6183480

I0122 23:02:21.939157  2968 layer_factory.hpp:77] Creating layer conv1

I0122 23:02:21.939210  2968 net.cpp:86] Creating Layer conv1

I0122 23:02:21.939235  2968 net.cpp:408] conv1 <- data

I0122 23:02:21.939278  2968 net.cpp:382] conv1 -> conv1

I0122 23:02:21.939563  2968 net.cpp:124] Setting up conv1

I0122 23:02:21.939604  2968 net.cpp:131] Top shape: 10 96 55 55 (2904000)

I0122 23:02:21.939618  2968 net.cpp:139] Memory required for data: 17799480

I0122 23:02:21.939685  2968 layer_factory.hpp:77] Creating layer relu1

I0122 23:02:21.939714  2968 net.cpp:86] Creating Layer relu1

I0122 23:02:21.939730  2968 net.cpp:408] relu1 <- conv1

I0122 23:02:21.939752  2968 net.cpp:369] relu1 -> conv1 (in-place)

I0122 23:02:21.939781  2968 net.cpp:124] Setting up relu1

I0122 23:02:21.939802  2968 net.cpp:131] Top shape: 10 96 55 55 (2904000)

I0122 23:02:21.939817  2968 net.cpp:139] Memory required for data: 29415480

I0122 23:02:21.939832  2968 layer_factory.hpp:77] Creating layer pool1

I0122 23:02:21.939857  2968 net.cpp:86] Creating Layer pool1

I0122 23:02:21.939868  2968 net.cpp:408] pool1 <- conv1

I0122 23:02:21.939887  2968 net.cpp:382] pool1 -> pool1

I0122 23:02:21.939947  2968 net.cpp:124] Setting up pool1

I0122 23:02:21.939967  2968 net.cpp:131] Top shape: 10 96 27 27 (699840)

I0122 23:02:21.939980  2968 net.cpp:139] Memory required for data: 32214840

I0122 23:02:21.939992  2968 layer_factory.hpp:77] Creating layer norm1

I0122 23:02:21.940014  2968 net.cpp:86] Creating Layer norm1

I0122 23:02:21.940027  2968 net.cpp:408] norm1 <- pool1

I0122 23:02:21.940045  2968 net.cpp:382] norm1 -> norm1

I0122 23:02:21.940075  2968 net.cpp:124] Setting up norm1

I0122 23:02:21.940093  2968 net.cpp:131] Top shape: 10 96 27 27 (699840)

I0122 23:02:21.940104  2968 net.cpp:139] Memory required for data: 35014200

I0122 23:02:21.940116  2968 layer_factory.hpp:77] Creating layer conv2

I0122 23:02:21.940137  2968 net.cpp:86] Creating Layer conv2

I0122 23:02:21.940152  2968 net.cpp:408] conv2 <- norm1

I0122 23:02:21.940171  2968 net.cpp:382] conv2 -> conv2

I0122 23:02:21.940996  2968 net.cpp:124] Setting up conv2

I0122 23:02:21.941033  2968 net.cpp:131] Top shape: 10 256 27 27 (1866240)

I0122 23:02:21.941045  2968 net.cpp:139] Memory required for data: 42479160

I0122 23:02:21.941121  2968 layer_factory.hpp:77] Creating layer relu2

I0122 23:02:21.941144  2968 net.cpp:86] Creating Layer relu2

I0122 23:02:21.941157  2968 net.cpp:408] relu2 <- conv2

I0122 23:02:21.941174  2968 net.cpp:369] relu2 -> conv2 (in-place)

I0122 23:02:21.941193  2968 net.cpp:124] Setting up relu2

I0122 23:02:21.941208  2968 net.cpp:131] Top shape: 10 256 27 27 (1866240)

I0122 23:02:21.941220  2968 net.cpp:139] Memory required for data: 49944120

I0122 23:02:21.941232  2968 layer_factory.hpp:77] Creating layer pool2

I0122 23:02:21.941248  2968 net.cpp:86] Creating Layer pool2

I0122 23:02:21.941259  2968 net.cpp:408] pool2 <- conv2

I0122 23:02:21.941275  2968 net.cpp:382] pool2 -> pool2

I0122 23:02:21.941301  2968 net.cpp:124] Setting up pool2

I0122 23:02:21.941316  2968 net.cpp:131] Top shape: 10 256 13 13 (432640)

I0122 23:02:21.941328  2968 net.cpp:139] Memory required for data: 51674680

I0122 23:02:21.941339  2968 layer_factory.hpp:77] Creating layer norm2

I0122 23:02:21.941360  2968 net.cpp:86] Creating Layer norm2

I0122 23:02:21.941372  2968 net.cpp:408] norm2 <- pool2

I0122 23:02:21.941390  2968 net.cpp:382] norm2 -> norm2

I0122 23:02:21.941411  2968 net.cpp:124] Setting up norm2

I0122 23:02:21.941426  2968 net.cpp:131] Top shape: 10 256 13 13 (432640)

I0122 23:02:21.941437  2968 net.cpp:139] Memory required for data: 53405240

I0122 23:02:21.941448  2968 layer_factory.hpp:77] Creating layer conv3

I0122 23:02:21.941468  2968 net.cpp:86] Creating Layer conv3

I0122 23:02:21.941478  2968 net.cpp:408] conv3 <- norm2

I0122 23:02:21.941495  2968 net.cpp:382] conv3 -> conv3

I0122 23:02:21.943603  2968 net.cpp:124] Setting up conv3

I0122 23:02:21.943662  2968 net.cpp:131] Top shape: 10 384 13 13 (648960)

I0122 23:02:21.943675  2968 net.cpp:139] Memory required for data: 56001080

I0122 23:02:21.943711  2968 layer_factory.hpp:77] Creating layer relu3

I0122 23:02:21.943733  2968 net.cpp:86] Creating Layer relu3

I0122 23:02:21.943747  2968 net.cpp:408] relu3 <- conv3

I0122 23:02:21.943765  2968 net.cpp:369] relu3 -> conv3 (in-place)

I0122 23:02:21.943786  2968 net.cpp:124] Setting up relu3

I0122 23:02:21.943801  2968 net.cpp:131] Top shape: 10 384 13 13 (648960)

I0122 23:02:21.943812  2968 net.cpp:139] Memory required for data: 58596920

I0122 23:02:21.943822  2968 layer_factory.hpp:77] Creating layer conv4

I0122 23:02:21.943848  2968 net.cpp:86] Creating Layer conv4

I0122 23:02:21.943861  2968 net.cpp:408] conv4 <- conv3

I0122 23:02:21.943881  2968 net.cpp:382] conv4 -> conv4

I0122 23:02:21.944964  2968 net.cpp:124] Setting up conv4

I0122 23:02:21.945030  2968 net.cpp:131] Top shape: 10 384 13 13 (648960)

I0122 23:02:21.945047  2968 net.cpp:139] Memory required for data: 61192760

I0122 23:02:21.945148  2968 layer_factory.hpp:77] Creating layer relu4

I0122 23:02:21.945188  2968 net.cpp:86] Creating Layer relu4

I0122 23:02:21.945206  2968 net.cpp:408] relu4 <- conv4

I0122 23:02:21.945230  2968 net.cpp:369] relu4 -> conv4 (in-place)

I0122 23:02:21.945258  2968 net.cpp:124] Setting up relu4

I0122 23:02:21.945277  2968 net.cpp:131] Top shape: 10 384 13 13 (648960)

I0122 23:02:21.945291  2968 net.cpp:139] Memory required for data: 63788600

I0122 23:02:21.945303  2968 layer_factory.hpp:77] Creating layer conv5

I0122 23:02:21.945334  2968 net.cpp:86] Creating Layer conv5

I0122 23:02:21.945353  2968 net.cpp:408] conv5 <- conv4

I0122 23:02:21.945376  2968 net.cpp:382] conv5 -> conv5

I0122 23:02:21.946549  2968 net.cpp:124] Setting up conv5

I0122 23:02:21.946606  2968 net.cpp:131] Top shape: 10 256 13 13 (432640)

I0122 23:02:21.946622  2968 net.cpp:139] Memory required for data: 65519160

I0122 23:02:21.946672  2968 layer_factory.hpp:77] Creating layer relu5

I0122 23:02:21.946698  2968 net.cpp:86] Creating Layer relu5

I0122 23:02:21.946717  2968 net.cpp:408] relu5 <- conv5

I0122 23:02:21.946743  2968 net.cpp:369] relu5 -> conv5 (in-place)

I0122 23:02:21.946771  2968 net.cpp:124] Setting up relu5

I0122 23:02:21.946792  2968 net.cpp:131] Top shape: 10 256 13 13 (432640)

I0122 23:02:21.946812  2968 net.cpp:139] Memory required for data: 67249720

I0122 23:02:21.946826  2968 layer_factory.hpp:77] Creating layer pool5

I0122 23:02:21.946848  2968 net.cpp:86] Creating Layer pool5

I0122 23:02:21.946864  2968 net.cpp:408] pool5 <- conv5

I0122 23:02:21.946885  2968 net.cpp:382] pool5 -> pool5

I0122 23:02:21.946935  2968 net.cpp:124] Setting up pool5

I0122 23:02:21.946971  2968 net.cpp:131] Top shape: 10 256 6 6 (92160)

I0122 23:02:21.946986  2968 net.cpp:139] Memory required for data: 67618360

I0122 23:02:21.947003  2968 layer_factory.hpp:77] Creating layer fc6

I0122 23:02:21.947028  2968 net.cpp:86] Creating Layer fc6

I0122 23:02:21.947044  2968 net.cpp:408] fc6 <- pool5

I0122 23:02:21.947065  2968 net.cpp:382] fc6 -> fc6

I0122 23:02:21.989847  2968 net.cpp:124] Setting up fc6

I0122 23:02:21.989913  2968 net.cpp:131] Top shape: 10 4096 (40960)

I0122 23:02:21.989919  2968 net.cpp:139] Memory required for data: 67782200

I0122 23:02:21.989943  2968 layer_factory.hpp:77] Creating layer relu6

I0122 23:02:21.989967  2968 net.cpp:86] Creating Layer relu6

I0122 23:02:21.989975  2968 net.cpp:408] relu6 <- fc6

I0122 23:02:21.989989  2968 net.cpp:369] relu6 -> fc6 (in-place)

I0122 23:02:21.990003  2968 net.cpp:124] Setting up relu6

I0122 23:02:21.990010  2968 net.cpp:131] Top shape: 10 4096 (40960)

I0122 23:02:21.990015  2968 net.cpp:139] Memory required for data: 67946040

I0122 23:02:21.990020  2968 layer_factory.hpp:77] Creating layer drop6

I0122 23:02:21.990031  2968 net.cpp:86] Creating Layer drop6

I0122 23:02:21.990036  2968 net.cpp:408] drop6 <- fc6

I0122 23:02:21.990043  2968 net.cpp:369] drop6 -> fc6 (in-place)

I0122 23:02:21.990067  2968 net.cpp:124] Setting up drop6

I0122 23:02:21.990074  2968 net.cpp:131] Top shape: 10 4096 (40960)

I0122 23:02:21.990079  2968 net.cpp:139] Memory required for data: 68109880

I0122 23:02:21.990084  2968 layer_factory.hpp:77] Creating layer fc7

I0122 23:02:21.990094  2968 net.cpp:86] Creating Layer fc7

I0122 23:02:21.990099  2968 net.cpp:408] fc7 <- fc6

I0122 23:02:21.990111  2968 net.cpp:382] fc7 -> fc7

I0122 23:02:22.008998  2968 net.cpp:124] Setting up fc7

I0122 23:02:22.009058  2968 net.cpp:131] Top shape: 10 4096 (40960)

I0122 23:02:22.009106  2968 net.cpp:139] Memory required for data: 68273720

I0122 23:02:22.009145  2968 layer_factory.hpp:77] Creating layer relu7

I0122 23:02:22.009173  2968 net.cpp:86] Creating Layer relu7

I0122 23:02:22.009187  2968 net.cpp:408] relu7 <- fc7

I0122 23:02:22.009209  2968 net.cpp:369] relu7 -> fc7 (in-place)

I0122 23:02:22.009232  2968 net.cpp:124] Setting up relu7

I0122 23:02:22.009248  2968 net.cpp:131] Top shape: 10 4096 (40960)

I0122 23:02:22.009259  2968 net.cpp:139] Memory required for data: 68437560

I0122 23:02:22.009269  2968 layer_factory.hpp:77] Creating layer drop7

I0122 23:02:22.009286  2968 net.cpp:86] Creating Layer drop7

I0122 23:02:22.009299  2968 net.cpp:408] drop7 <- fc7

I0122 23:02:22.009322  2968 net.cpp:369] drop7 -> fc7 (in-place)

I0122 23:02:22.009346  2968 net.cpp:124] Setting up drop7

I0122 23:02:22.009362  2968 net.cpp:131] Top shape: 10 4096 (40960)

I0122 23:02:22.009371  2968 net.cpp:139] Memory required for data: 68601400

I0122 23:02:22.009382  2968 layer_factory.hpp:77] Creating layer fc8

I0122 23:02:22.009399  2968 net.cpp:86] Creating Layer fc8

I0122 23:02:22.009410  2968 net.cpp:408] fc8 <- fc7

I0122 23:02:22.009428  2968 net.cpp:382] fc8 -> fc8

I0122 23:02:22.017177  2968 net.cpp:124] Setting up fc8

I0122 23:02:22.017282  2968 net.cpp:131] Top shape: 10 1000 (10000)

I0122 23:02:22.017313  2968 net.cpp:139] Memory required for data: 68641400

I0122 23:02:22.017356  2968 layer_factory.hpp:77] Creating layer prob

I0122 23:02:22.017395  2968 net.cpp:86] Creating Layer prob

I0122 23:02:22.017411  2968 net.cpp:408] prob <- fc8

I0122 23:02:22.017433  2968 net.cpp:382] prob -> prob

I0122 23:02:22.017469  2968 net.cpp:124] Setting up prob

I0122 23:02:22.017491  2968 net.cpp:131] Top shape: 10 1000 (10000)

I0122 23:02:22.017504  2968 net.cpp:139] Memory required for data: 68681400

I0122 23:02:22.017516  2968 net.cpp:202] prob does not need backward computation.

I0122 23:02:22.017554  2968 net.cpp:202] fc8 does not need backward computation.

I0122 23:02:22.017566  2968 net.cpp:202] drop7 does not need backward computation.

I0122 23:02:22.017577  2968 net.cpp:202] relu7 does not need backward computation.

I0122 23:02:22.017588  2968 net.cpp:202] fc7 does not need backward computation.

I0122 23:02:22.017598  2968 net.cpp:202] drop6 does not need backward computation.

I0122 23:02:22.017609  2968 net.cpp:202] relu6 does not need backward computation.

I0122 23:02:22.017619  2968 net.cpp:202] fc6 does not need backward computation.

I0122 23:02:22.017630  2968 net.cpp:202] pool5 does not need backward computation.

I0122 23:02:22.017642  2968 net.cpp:202] relu5 does not need backward computation.

I0122 23:02:22.017652  2968 net.cpp:202] conv5 does not need backward computation.

I0122 23:02:22.017663  2968 net.cpp:202] relu4 does not need backward computation.

I0122 23:02:22.017674  2968 net.cpp:202] conv4 does not need backward computation.

I0122 23:02:22.017685  2968 net.cpp:202] relu3 does not need backward computation.

I0122 23:02:22.017696  2968 net.cpp:202] conv3 does not need backward computation.

I0122 23:02:22.017707  2968 net.cpp:202] norm2 does not need backward computation.

I0122 23:02:22.017720  2968 net.cpp:202] pool2 does not need backward computation.

I0122 23:02:22.017734  2968 net.cpp:202] relu2 does not need backward computation.

I0122 23:02:22.017746  2968 net.cpp:202] conv2 does not need backward computation.

I0122 23:02:22.017757  2968 net.cpp:202] norm1 does not need backward computation.

I0122 23:02:22.017770  2968 net.cpp:202] pool1 does not need backward computation.

I0122 23:02:22.017783  2968 net.cpp:202] relu1 does not need backward computation.

I0122 23:02:22.017796  2968 net.cpp:202] conv1 does not need backward computation.

I0122 23:02:22.017809  2968 net.cpp:202] input does not need backward computation.

I0122 23:02:22.017819  2968 net.cpp:244] This network produces output prob

I0122 23:02:22.017868  2968 net.cpp:257] Network initialization done.

I0122 23:02:22.196004  2968 upgrade_proto.cpp:44] Attempting to upgrade input file specified using deprecated transformation parameters: /home/relaybot/Rob_Soft/caffe/src/ros_caffe/data/bvlc_reference_caffenet.caffemodel

I0122 23:02:22.196061  2968 upgrade_proto.cpp:47] Successfully upgraded file specified using deprecated data transformation parameters.

W0122 23:02:22.196069  2968 upgrade_proto.cpp:49] Note that future Caffe releases will only support transform_param messages for transformation fields.

I0122 23:02:22.196074  2968 upgrade_proto.cpp:53] Attempting to upgrade input file specified using deprecated V1LayerParameter: /home/relaybot/Rob_Soft/caffe/src/ros_caffe/data/bvlc_reference_caffenet.caffemodel

I0122 23:02:22.506147  2968 upgrade_proto.cpp:61] Successfully upgraded file specified using deprecated V1LayerParameter

I0122 23:02:22.507925  2968 net.cpp:746] Ignoring source layer data

I0122 23:02:22.597734  2968 net.cpp:746] Ignoring source layer loss

W0122 23:02:22.716584  2968 net.hpp:41] DEPRECATED: ForwardPrefilled() will be removed in a future version. Use Forward().

Test default image under /data/cat.jpg

0.3134 - "n02123045 tabby, tabby cat"
0.2380 - "n02123159 tiger cat"
0.1235 - "n02124075 Egyptian cat"
0.1003 - "n02119022 red fox, Vulpes vulpes"
0.0715 - "n02127052 lynx, catamount"
W0122 23:07:35.308277  2968 net.hpp:41] DEPRECATED: ForwardPrefilled() will be removed in a future version. Use Forward().
W0122 23:12:52.805382  2968 net.hpp:41] DEPRECATED: ForwardPrefilled() will be removed in a future version. Use Forward().

$ rostopic list

/camera/rgb/image_raw
/camera_info
/image_raw
/image_raw/compressed
/image_raw/compressed/parameter_descriptions
/image_raw/compressed/parameter_updates
/image_raw/compressedDepth
/image_raw/compressedDepth/parameter_descriptions
/image_raw/compressedDepth/parameter_updates
/image_raw/theora
/image_raw/theora/parameter_descriptions
/image_raw/theora/parameter_updates
/rosout
/rosout_agg

$ rostopic echo /caffe_ret

---
data: [0.557911 - n04286575 spotlight, spot]
[0.115966 - n03729826 matchstick]
[0.0737537 - n02948072 candle, taper, wax light]
[0.040883 - n09472597 volcano]
[0.028961 - n03666591 lighter, light, igniter, ignitor]

---

$ rosrun rqt_graph rqt_graph

-End-

Ubuntu 16.04 使用docker资料汇总与应用docker安装caffe并使用Classifier(ros kinetic+usb_cam+caffe)的更多相关文章

  1. 【转】Ubuntu 16.04安装配置TensorFlow GPU版本

    之前摸爬滚打总是各种坑,今天参考这篇文章终于解决了,甚是鸡冻\(≧▽≦)/,电脑不知道怎么的,安装不了16.04,就安装15.10再升级到16.04 requirements: Ubuntu 16.0 ...

  2. Ubuntu 16.04环境布署小记

    本系列文章记录了升级Ubuntu 16.04的布署过程 回到目录 10. 安装Mono, Xsp 当前版本16.04.1的系统源的Mono版本为4.2.1,如需使用最新版本(本文书写时稳定版本为4.6 ...

  3. tips of my ubuntu 16.04 LTS

    update_0 : sudo .../idea.sh 才会把idea安装上,不加sudo也会启动,但是不会在开始菜单中找到程序. ---------------------------------- ...

  4. Ubuntu 16.04安装sogou 拼音输入法

    一.更换为国内的软件源 安装搜狗输入法之前请先更换为国内的软件源,否则无法解决依赖问题.首先,用以下命令打开源列表: sudo gedit /etc/apt/sources.list #用文本编辑器打 ...

  5. 【Ubuntu】xrdp完美实现Windows远程访问Ubuntu 16.04

    步骤一.下载TigerVNC Server软件包 下载地址:Tigervnc Deb软件包(适用于Ubuntu 16.04.1 - 64位) 步骤二. 安装TigerVNC Server软件包 1.打 ...

  6. xrdp完美实现Windows远程访问Ubuntu 16.04

    前言: 在很多场景下,我们需要远程连接到Linux服务器(本文是Ubuntu),传统的连接主要分为两种. 第一种:通过SSH服务(使用xshell等工具)来远程访问,编写终端命令,不过这个是无界面的, ...

  7. ubuntu 16.04 上opengl 的安装以及例子程序编译执行

    因为最近在移植 Qt5.7 + opengl , 遇到了难以越过的山峰,没有办法,试着在 ubuntu 16.04上将 opengl 配置以下,记录: 安装相关的库: sudo apt-get ins ...

  8. Ubuntu 16.04 64位安装YouCompleteMe

    之前记录在OneNote上感觉有点乱,而且不适合保存shell,这次重新安装又出问题了,干脆写篇博客记录. 从零开始 1.git(用来下载vim和相关插件) sudo apt-get install ...

  9. Ubuntu 16.04.5安装docker

    一:安装Ubuntu 16.04.5   下载地址: 1.magnet:?xt=urn:btih:C3C5FE05C329AE51C6ECA464F6B30BA0A457B2CA 2.http://m ...

随机推荐

  1. OpenCV-跟我学一起学数字图像处理之中值滤波

    中值滤波(median filter)在数字图像处理中属于空域平滑滤波的内容(spatial filtering).对消除椒盐噪声具有很好的效果. 数学原理 为了讲述的便捷,我们以灰度图为例.RGB三 ...

  2. HDU--4764

    题目: Stone 原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4764 #include<iostream> #include<c ...

  3. springcloud的分布式配置Config

    1.为什么要统一配置管理? 微服务由多个服务构成,多个服务多个配置,则对这些配置需要集中管理.不同环境不同配置,运行期间动态调整,自动刷新. 统一管理微服务的配置:分布式配置管理的一些组件: zook ...

  4. servlet的application对象的使用

    application对象 1 什么是application对象 ? (1) 当Web服务器启动时,Web服务器会自动创建一个application对象.application对象一旦创建,它将一直存 ...

  5. 百度语音合成 composer

    https://packagist.org/packages/jormin/baidu-speech http://ai.baidu.com/docs#/TTS-Online-PHP-SDK/top

  6. mysql 同步数据到 ElasticSearch 的方案

    MySQL Binlog 要通过 MySQL binlog 将 MySQL 的数据同步给 ES, 我们只能使用 row 模式的 binlog.如果使用 statement 或者 mixed forma ...

  7. 求助大佬3——hash姿势

    某同学的hash姿势: 完整代码:http://www.cnblogs.com/TheRoadToTheGold/p/6370487.html long long get_hash1(long lon ...

  8. 解析html和采集网页的神兵利器

    HtmlAgilityPack是一个基于.Net的.第三方免费开源的微型类库,主要用于在服务器端解析html文档(在B/S结构的程序中客户端可以用Javascript解析html).截止到本文发表时, ...

  9. Mysql服务优化

    Mysql服务优化   Mysql服务加速优化的6个阶段 硬件层面优化 操作系统层面优化 Mysql数据库层面优化 网站集群架构层面优化 安全优化 流程.制度控制优化 1.硬件层面优化 CPU     ...

  10. 45、文件过滤器FilenameFilter

    文件过滤器FilenameFilter JDK中提供了一个FilenameFilter的接口用来实现文件过滤功能,可以使用这个文件过滤器来实现上一节中的问题. File类中有一个带参数的list方法 ...