(最大矩阵链乘)Matrix-chain product
Matrix-chain product. The following are some instances.
a) <3, 5, 2, 1,10>
b) <2, 7, 3, 6, 10>
c) <10, 3, 15, 12, 7, 2>
d) <7, 2, 4, 15, 20, 5>
矩阵链乘积:
应用动态规划方法:
- 1.刻画一个最优解的结构特征
- 2.递归地定义最优解的值
- 3.计算最优解的值,采用自底向上的方法
- 4.利用计算出的信息构造一个最优解
思想:
1.最优括号化方案的结构特征
用记号A[i..j]表示乘积A[i]A[i+1]..A[j]求值的结果,其中i <=j 。
假设A[i]A[i+1]...A[j]的一个最优解括号把乘积在A[k]和A[k+1]之间分开,则对A[i]A[i+1]...A[j]最优解括号化方案中的“前缀”子链A[i]A[i+1]...A[k]的最优括号化的方法,必须是A[i]A[i+1]...A[k]的一个最有解括号化方案,类似的,A[k+1]A[k+2]…A[j]同理。
2.设m[i][j]为计算矩阵A[i..j]所需的标量乘法运算次数的最小值;
对整个问题,计算A[1..n]的最小代价就是m[1][n]。
假设最优加全部括号将乘积A[i]A[i+1]...A[j]从A[k]和A[k+1]之间分开,i <= k < j。
则:m[i][j] = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j]
关于对乘积A[i]A[i+1]...A[j]加全部括号的最小代价的递归定义为:
m[i][j] = 0 if i == j
m[i][j] = min(i<=k<j){m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j]} s[i][j]=k if i < j
用s[i][j]记录最优值m[i][j]的对应的分割点。
3.用迭代自底向上的表格法来计算最优代价。
4.利用保存在表格s[n][n]内的、经过计算的信息来构造一个最优解。
按最优方式计算A[1..n]时,最终矩阵相乘次序是A[1..s[1][n]]A[a[1][n]+1..n]。
之前的乘法可以递归地进行。
public class Q1_Matrix_chain {
public static int[] atest ={30,35,15,5,10,20,25};
public static int[] a={3, 5, 2, 1, 10};
public static int[] b={2, 7, 3, 6, 10};
public static int[] c={10, 3, 15, 12, 7, 2};
public static int[] d={7, 2, 4, 15, 20, 5};
public static void main(String[] args)
{
System.out.println("<3, 5, 2, 1,10>");
Matrix_Chain_Order(a);
System.out.println("<2, 7, 3, 6, 10>");
Matrix_Chain_Order(b);
System.out.println("<10, 3, 15, 12, 7, 2>");
Matrix_Chain_Order(c);
System.out.println("<7, 2, 4, 15, 20, 5>");
Matrix_Chain_Order(d);
}
public static void Matrix_Chain_Order(int[] a){
int n = a.length-1;
int[][] m = new int[n+1][n+1];
int[][] s = new int[n+1][n+1];
int i,j,k,t;
for (i=0;i<=n;i++)
m[i][i] = 0;
for (i=0;i<=n;i++)
s[i][i] = 0;
for(t=2; t<=n; t++) //t is the chain length
{
for(i=1;i<=n-t+1;i++)//从第一矩阵开始计算,计算长度为t的最小代价
{
j = i+t-1;//长度为t时候的最后一个元素
m[i][j] = 1000000;//初始化为最大代价
for(k=i;k<=j-1;k++)//寻找最优的k值,使得分成两部分k在i与j-1之间
{
int temp = m[i][k]+m[k+1][j] + a[i-1]*a[k]*a[j];
if(temp < m[i][j])
{
m[i][j] = temp; //记录下当前的最小代价
s[i][j] = k; //记录当前的括号位置,即矩阵的编号
}
}
}
}
System.out.println("一个最优解为:");
Display(s,1,n);
System.out.println("\n计算的次数为:");
System.out.println(m[1][n]);
}
public static void Display(int[][] s,int i,int j)
{
if( i == j)
{
System.out.print('A');
System.out.print(i);
}
else
{
System.out.print('(');
Display(s,i,s[i][j]);
Display(s,s[i][j]+1,j);
System.out.print(')');
}
}
}
(最大矩阵链乘)Matrix-chain product的更多相关文章
- UVA442 矩阵链乘 Matrix Chain Multiplication
题意: 这道题也是在不改变原序列每个元素位置的前提下,看每个元素与他身边的两个元素那个先结合能得到最大的能量 题解: 很明显这是一道区间dp的题目,这道题要断环成链,这道题需要考虑在这个区间上某个元素 ...
- UVa 442 Matrix Chain Multiplication(矩阵链,模拟栈)
意甲冠军 由于矩阵乘法计算链表达的数量,需要的计算 后的电流等于行的矩阵的矩阵的列数 他们乘足够的人才 非法输出error 输入是严格合法的 即使仅仅有两个相乘也会用括号括起来 并且括号中 ...
- UVa442 Matrix Chain Multiplication
// UVa442 Matrix Chain Multiplication // 题意:输入n个矩阵的维度和一些矩阵链乘表达式,输出乘法的次数.假定A和m*n的,B是n*p的,那么AB是m*p的,乘法 ...
- 【UVa-442】矩阵链乘——简单栈练习
题目描述: 输入n个矩阵的维度和一些矩阵链乘表达式,输出乘法的次数.如果乘法无法进行,输出error. Sample Input 9 A 50 10 B 10 20 C 20 5 D 30 35 E ...
- COJ 0016 20603矩阵链乘
传送门:http://oj.cnuschool.org.cn/oj/home/solution.htm?solutionID=35454 20603矩阵链乘 难度级别:B: 运行时间限制:1000ms ...
- Algorithm --> 矩阵链乘法
动态规划--矩阵链乘法 1.矩阵乘法 Note:只有当矩阵A的列数与矩阵B的行数相等时A×B才有意义.一个m×r的矩阵A左乘一个r×n的矩阵B,会得到一个m×n的矩阵C. #include ...
- Matrix Chain Multiplication (堆栈)
题目链接:https://vjudge.net/problem/UVA-442 题目大意:输入n个矩阵的维度和一些矩阵链乘表达式,输出乘法的次数.如果乘法无法进行,输出error. 假定A是m*n的矩 ...
- UVA——442 Matrix Chain Multiplication
442 Matrix Chain MultiplicationSuppose you have to evaluate an expression like A*B*C*D*E where A,B,C ...
- ACM学习历程——UVA442 Matrix Chain Multiplication(栈)
Description Matrix Chain Multiplication Matrix Chain Multiplication Suppose you have to evaluate ...
随机推荐
- 关于javaweb中图片的存储问题
图片上传到服务器,然后把上传路径保存到数据库,然后从数据库读出保存的路径显示到网站页面. 我们一般可以在CMS系统中将图片添加到图片服务器中(这个可以使用ftp来部署),然后图片上传到服务器后,在数据 ...
- 3.CentOS的一些小笔记
1.一般来说,主文件夹都在/home下面,比如登陆的账户为LyndonMario,则我的主文件夹为 /home/LyndonMario. 2.ctrl+space可以调出输入法. 3.CentOS中的 ...
- Java Learning之文档注释
文档注释的结构 文档注释主体的开头是一句话,概述类型或成员的作用,应自成一体.后面可跟其他句子或段落,用以详细说明类.接口.方法或字段. 除了这些描述性的段落以外,后也可跟其他段落,数量不限,并且每段 ...
- 「Vue」v-on修饰符
修饰符stop阻止冒泡 --> <!-- <div id="myvue" @click="divc" class="d1" ...
- solr基础使用概述
概述:solr 作为搜索引擎系统,它应该包含两部分内容,分别是:索引系统 和 搜索系统. 索引系统 它主要负责将外部不同数据源的数据转换为 solr 格式规范的数据格式(我们称之为:SolrInput ...
- element ui 上传文件,读取内容乱码解决
element ui 上传文件,读取内容乱码解决: 加第二个参数 reader.readAsText(file.raw,'gb2312'); <el-upload class="upl ...
- enumerate 遍历numpy数组
enumerate 遍历numpy数组 觉得有用的话,欢迎一起讨论相互学习~Follow Me 遍历一维数组 i,j 分别表示数组的 索引 和 存储的值 import numpy as np a=np ...
- poj 2728 Desert King (最优比率生成树)
Desert King http://poj.org/problem?id=2728 Time Limit: 3000MS Memory Limit: 65536K Descripti ...
- COGS 5. P服务点设置
5. P服务点设置 http://www.cogs.pro/cogs/problem/problem.php?pid=5 ★★ 输入文件:djsc.in 输出文件:djsc.out 简单对 ...
- 二分算法的应用——Codevs 1766 装果子
#include<iostream> #include<cstdio> using namespace std; + ; typedef long long LL; LL a[ ...