转自:http://blog.51cto.com/ahalei/1383613

       暑假,小哼准备去一些城市旅游。有些城市之间有公路,有些城市之间则没有,如下图。为了节省经费以及方便计划旅程,小哼希望在出发之前知道任意两个城市之前的最短路程。

上图中有4个城市8条公路,公路上的数字表示这条公路的长短。请注意这些公路是单向的。我们现在需要求任意两个城市之间的最短路程,也就是求任意两个点之间的最短路径。这个问题这也被称为“多源最短路径”问题。

       现在需要一个数据结构来存储图的信息,我们仍然可以用一个4*4的矩阵(二维数组e)来存储。比如1号城市到2号城市的路程为2,则设e[1][2]的值为2。2号城市无法到达4号城市,则设置e[2][4]的值为∞。另外此处约定一个城市自己是到自己的也是0,例如e[1][1]为0,具体如下。

现在回到问题:如何求任意两点之间最短路径呢?通过之前的学习我们知道通过深度或广度优先搜索可以求出两点之间的最短路径。所以进行n2遍深度或广度优先搜索,即对每两个点都进行一次深度或广度优先搜索,便可以求得任意两点之间的最短路径。可是还有没有别的方法呢?

       我们来想一想,根据我们以往的经验,如果要让任意两点(例如从顶点a点到顶点b)之间的路程变短,只能引入第三个点(顶点k),并通过这个顶点k中转即a->k->b,才可能缩短原来从顶点a点到顶点b的路程。那么这个中转的顶点k是1~n中的哪个点呢?甚至有时候不只通过一个点,而是经过两个点或者更多点中转会更短,即a->k1->k2b->或者a->k1->k2…->k->i…->b。比如上图中从4号城市到3号城市(4->3)的路程e[4][3]原本是12。如果只通过1号城市中转(4->1->3),路程将缩短为11(e[4][1]+e[1][3]=5+6=11)。其实1号城市到3号城市也可以通过2号城市中转,使得1号到3号城市的路程缩短为5(e[1][2]+e[2][3]=2+3=5)。所以如果同时经过1号和2号两个城市中转的话,从4号城市到3号城市的路程会进一步缩短为10。通过这个的例子,我们发现每个顶点都有可能使得另外两个顶点之间的路程变短。好,下面我们将这个问题一般化。
       当任意两点之间不允许经过第三个点时,这些城市之间最短路程就是初始路程,如下。
 

如现在只允许经过1号顶点,求任意两点之间的最短路程,应该如何求呢?只需判断e[i][1]+e[1][j]是否比e[i][j]要小即可。e[i][j]表示的是从i号顶点到j号顶点之间的路程。e[i][1]+e[1][j]表示的是从i号顶点先到1号顶点,再从1号顶点到j号顶点的路程之和。其中i是1~n循环,j也是1~n循环,代码实现如下。

 for(i=;i<=n;i++)
{
for(j=;j<=n;j++)
{
if ( e[i][j] > e[i][]+e[][j] )
e[i][j] = e[i][]+e[][j];
}
}
 在只允许经过1号顶点的情况下,任意两点之间的最短路程更新为:

通过上图我们发现:在只通过1号顶点中转的情况下,3号顶点到2号顶点(e[3][2])、4号顶点到2号顶点(e[4][2])以及4号顶点到3号顶点(e[4][3])的路程都变短了。

接下来继续求在只允许经过1和2号两个顶点的情况下任意两点之间的最短路程。如何做呢?我们需要在只允许经过1号顶点时任意两点的最短路程的结果下,再判断如果经过2号顶点是否可以使得i号顶点到j号顶点之间的路程变得更短。即判断e[i][2]+e[2][j]是否比e[i][j]要小,代码实现为如下。

 //经过1号顶点
for(i=;i<=n;i++)
for(j=;j<=n;j++)
if (e[i][j] > e[i][]+e[][j]) e[i][j]=e[i][]+e[][j];
//经过2号顶点
for(i=;i<=n;i++)
for(j=;j<=n;j++)
if (e[i][j] > e[i][]+e[][j]) e[i][j]=e[i][]+e[][j];
在只允许经过1和2号顶点的情况下,任意两点之间的最短路程更新为:
       通过上图得知,在相比只允许通过1号顶点进行中转的情况下,这里允许通过1和2号顶点进行中转,使得e[1][3]和e[4][3]的路程变得更短了。
       同理,继续在只允许经过1、2和3号顶点进行中转的情况下,求任意两点之间的最短路程。任意两点之间的最短路程更新为:
       最后允许通过所有顶点作为中转,任意两点之间最终的最短路程为:

整个算法过程虽然说起来很麻烦,但是代码实现却非常简单,核心代码只有五行:

 for(k=;k<=n;k++)
for(i=;i<=n;i++)
for(j=;j<=n;j++)
if(e[i][j]>e[i][k]+e[k][j])
e[i][j]=e[i][k]+e[k][j];

这段代码的基本思想就是:最开始只允许经过1号顶点进行中转,接下来只允许经过1和2号顶点进行中转……允许经过1~n号所有顶点进行中转,求任意两点之间的最短路程。用一句话概括就是:从i号顶点到j号顶点只经过前k号点的最短路程。其实这是一种“动态规划”的思想,关于这个思想我们将在《啊哈!算法2——伟大思维闪耀时》在做详细的讨论。

        通过这种方法我们可以求出任意两个点之间最短路径。它的时间复杂度是O(N3)。令人很震撼的是它竟然只有五行代码,实现起来非常容易。正是因为它实现起来非常容易,如果时间复杂度要求不高,使用Floyd-Warshall来求指定两点之间的最短路或者指定一个点到其余各个顶点的最短路径也是可行的。当然也有更快的算法,请看下一节:Dijkstra算法。
       另外需要注意的是:Floyd-Warshall算法不能解决带有“负权回路”(或者叫“负权环”)的图,因为带有“负权回路”的图没有最短路。例如下面这个图就不存在1号顶点到3号顶点的最短路径。因为1->2->3->1->2->3->…->1->2->3这样路径中,每绕一次1->-2>3这样的环,最短路就会减少1,永远找不到最短路。其实如果一个图中带有“负权回路”那么这个图则没有最短路。

此算法由Robert W. Floyd(罗伯特·弗洛伊德)于1962年发表在“Communications of the ACM”上。同年Stephen Warshall(史蒂芬·沃舍尔)也独立发表了这个算法。Robert W.Floyd这个牛人是朵奇葩,他原本在芝加哥大学读的文学,但是因为当时美国经济不太景气,找工作比较困难,无奈之下到西屋电气公司当了一名计算机操作员,在IBM650机房值夜班,并由此开始了他的计算机生涯。此外他还和J.W.J. Williams(威廉姆斯)于1964年共同发明了著名的堆排序算法HEAPSORT。堆排序算法我们将在第七章学习。Robert W.Floyd在1978年获得了图灵奖。

(转)最短路算法 -- Floyd算法的更多相关文章

  1. 最短路-SPFA算法&Floyd算法

    SPFA算法 算法复杂度 SPFA 算法是 Bellman-Ford算法 的队列优化算法的别称,通常用于求含负权边的单源最短路径,以及判负权环. SPFA一般情况复杂度是O(m)最坏情况下复杂度和朴素 ...

  2. 最短路之Floyd算法

    1.介绍 floyd算法只有五行代码,代码简单,三个for循环就可以解决问题,所以它的时间复杂度为O(n^3),可以求多源最短路问题. 2.思想: Floyd算法的基本思想如下:从任意节点A到任意节点 ...

  3. HDOJ 1217 Arbitrage(拟最短路,floyd算法)

    Arbitrage Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total ...

  4. [链接]最短路径的几种算法[迪杰斯特拉算法][Floyd算法]

    最短路径—Dijkstra算法和Floyd算法 http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html Dijkstra算 ...

  5. 只有5行代码的算法——Floyd算法

    Floyd算法用于求一个带权有向图(Wighted Directed Graph)的任意两点距离的算法,运用了动态规划的思想,算法的时间复杂度为O(n^3).具体方法是:设点i到点j的距离为d[i][ ...

  6. 多源最短路径算法—Floyd算法

    前言 在图论中,在寻路最短路径中除了Dijkstra算法以外,还有Floyd算法也是非常经典,然而两种算法还是有区别的,Floyd主要计算多源最短路径. 在单源正权值最短路径,我们会用Dijkstra ...

  7. 图的最短路径算法-- Floyd算法

    Floyd算法求的是图的任意两点之间的最短距离 下面是Floyd算法的代码实现模板: ; ; // maxv为最大顶点数 int n, m; // n 为顶点数,m为边数 int dis[maxv][ ...

  8. 最短路 之 floyd 算法

    Floyd 在我认为这是最短路算法中最简单的一个,也是最low的一个. 所以我们组一位大佬给他起了一个新的名字,叫做超时!!! (其实如果数据范围很小的话,这个算法还是蛮好用的!!) 这个算法比较简单 ...

  9. 21.多源最短路(floyd算法)

    时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 查看运行结果 题目描述 Description 已知n个点(n<=100),给你n*n的方阵,a[i,j] ...

随机推荐

  1. vue组件间的通信

    组件的定义: 组件(Component)是 Vue.js 最强大的功能之一.组件可以扩展 HTML 元素,封装可重用的代码.在较高层面上,组件是自定义元素, Vue.js 的编译器为它添加特殊功能.v ...

  2. Mongodb开启远程连接并认证

    环境: Mongodb版本:3.4.6 步骤: 1.  mongo创建管理员: 在mongo shell下: use admin db.createUser( { user: "testus ...

  3. 天梯赛 L2-013. (并查集) 红色警报

    题目链接 题目描述 战争中保持各个城市间的连通性非常重要.本题要求你编写一个报警程序,当失去一个城市导致国家被分裂为多个无法连通的区域时,就发出红色警报.注意:若该国本来就不完全连通,是分裂的k个区域 ...

  4. html5 构造网页的新方式

    从 html 诞生至今,我们构建 html 页面的使用 html 元素好像并没有太多的进步.在构建 html 页面中,用的最多的是 div 标签.但是应用 div 标签构建 html 页面有一个问题, ...

  5. java后台中处理图片辅助类汇总(上传图片到服务器,从服务器下载图片保存到本地,缩放图片,copy图片,往图片添加水印图片或者文字,生成二维码,删除图片等)

    最近工作中处理小程序宝箱活动,需要java画海报,所以把这块都快百度遍了,记录一下处理的方法,百度博客上面也有不少坑! 获取本地图片路径: String bgPath = Thread.current ...

  6. Dom解析XML文件具体用法

    public class Dom4j { public static void main(String[] args) throws Exception { List<Student> l ...

  7. zookeeper zkClient api 使用

    操作步骤: 一.引入zkclient的jar包(maven方式) <dependency> <groupId>com.101tec</groupId> <ar ...

  8. 【工具记录】Linux口令破解

    1.基础知识 /etc/passwd:记录着用户的基本属性,所有用户可读 字段含义如下: 用户名:口令:用户标识号:组标识号:注释性描述:主目录:登录Shell eg: root:x:0:0:root ...

  9. textarea保留换行和空格

    <style> pre {white-space: pre-wrap;} </style> //替换textare <pre class="feedback_q ...

  10. Python_oldboy_自动化运维之路(二)

    本节内容: 1.pycharm工具的使用 2.进制运算 3.表达式if ...else语句 4.表达式for 循环 5.break and continue 6.表达式while 循环 1.pycha ...