Drainage Ditches

Time Limit: 1000MS Memory Limit: 10000K

Description

Every time it rains on Farmer John’s fields, a pond forms over Bessie’s favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie’s clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch.

Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network.

Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle.

Input

The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.

Output

For each case, output a single integer, the maximum rate at which water may emptied from the pond.

Sample Input

5 4

1 2 40

1 4 20

2 4 20

2 3 30

3 4 10

Sample Output

50

Source

USACO 93

一道最大流的板子题,感觉也没什么好说的,建图也比较easy" role="presentation" style="position: relative;">easyeasy,直接套个dinic" role="presentation" style="position: relative;">dinicdinic就行了。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#define oo 0x3f3f3f3f
#define N 10005
using namespace std;
struct Node{
    int v,next,c;
}e[N<<1];
int tot=1,n,m,d[N],first[N];
inline void add(int u,int v,int c){
    e[++tot].v=v;
    e[tot].next=first[u];
    e[tot].c=c;
    first[u]=tot;
}
inline long long read(){
    long long ans=0;
    char ch=getchar();
    while(!isdigit(ch))ch=getchar();
    while(isdigit(ch)){
        ans=(ans<<3)+(ans<<1)+ch-'0';
        ch=getchar();
    }
    return ans;
}
inline int max(int a,int b){return a>b?a:b;}
inline bool bfs(){
    queue<int>q;
    q.push(1);
    memset(d,-1,sizeof(d));
    d[1]=0;
    while(!q.empty()){
        int x=q.front();
        q.pop();
        for(int i=first[x];i!=-1;i=e[i].next){
            if(d[e[i].v]==-1&&e[i].c){
                d[e[i].v]=d[x]+1;
                if(e[i].v==m)return true;
                q.push(e[i].v);
            }

        }
    }
    return false;
}
inline int dfs(int p,int f){
    if(p==m)return f;
    int cnt=f;
    for(int i=first[p];i!=-1;i=e[i].next){
        int v=e[i].v;
        if(d[v]==d[p]+1&&e[i].c>0&&cnt){
            int maxn=dfs(v,min(cnt,e[i].c));
            if(maxn==0)d[v]=-1;
            cnt-=maxn;
            e[i].c-=maxn;
            e[i^1].c+=maxn;
        }

    }
    return f-cnt;
}
int main(){
    while(scanf("%d%d",&n,&m)!=EOF){
        tot=1;
        memset(first,-1,sizeof(first));
        for(int i=1;i<=n;++i){
            int u=read(),v=read(),w=read();
            add(u,v,w);
            add(v,u,0);
        }
        int ans=0;
        while(bfs())ans+=dfs(1,oo);
        printf("%d\n",ans);
    }

    return 0;
}

2018.07.06 POJ1273 Drainage Ditches(最大流)的更多相关文章

  1. poj-1273 Drainage Ditches(最大流基础题)

    题目链接: Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 67475   Accepted ...

  2. POJ-1273 Drainage Ditches 最大流Dinic

    Drainage Ditches Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 65146 Accepted: 25112 De ...

  3. POJ1273:Drainage Ditches(最大流入门 EK,dinic算法)

    http://poj.org/problem?id=1273 Description Every time it rains on Farmer John's fields, a pond forms ...

  4. poj1273 Drainage Ditches (最大流板子

    网络流一直没学,来学一波网络流. https://vjudge.net/problem/POJ-1273 题意:给定点数,边数,源点,汇点,每条边容量,求最大流. 解法:EK或dinic. EK:每次 ...

  5. [poj1273]Drainage Ditches(最大流)

    解题关键:最大流裸题 #include<cstdio> #include<cstring> #include<algorithm> #include<cstd ...

  6. poj1273 Drainage Ditches Dinic最大流

    Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 76000   Accepted: 2953 ...

  7. Poj 1273 Drainage Ditches(最大流 Edmonds-Karp )

    题目链接:poj1273 Drainage Ditches 呜呜,今天自学网络流,看了EK算法,学的晕晕的,留个简单模板题来作纪念... #include<cstdio> #include ...

  8. poj1273 Drainage Ditches

    Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 68414   Accepted: 2648 ...

  9. poj 1273 Drainage Ditches 最大流入门题

    题目链接:http://poj.org/problem?id=1273 Every time it rains on Farmer John's fields, a pond forms over B ...

随机推荐

  1. Android 照相

    XE6 控件太强了CameraComponent就可以了 CameraComponent1.Active := True; procedure TCameraComponentForm.CameraC ...

  2. java Export Excel POI 转

    最终选择用POI成功导出excel.总之很有用. http://www.cnblogs.com/xwdreamer/archive/2011/07/20/2296975.html http://poi ...

  3. 程序员必看:给你一份详细的Spring Boot知识清单

    在过去两三年的Spring生态圈,最让人兴奋的莫过于Spring Boot框架.或许从命名上就能看出这个框架的设计初衷:快速的启动Spring应用.因而Spring Boot应用本质上就是一个基于Sp ...

  4. 使用curl发起https请求

    "SSL certificate problem, verify that the CA cert is OK. Details: error:14090086:SSL routines:S ...

  5. Oracle免客户端InstantClient安装使用

    正常情况下,用PL/SQL等软件连接Oracle,需要安装Oracle客户端软件,一般安装oracle客户端差不多需要2G左右的硬盘空间,但如果我们仅仅是连接数据库进行查询和执行一些相应的语句而不进行 ...

  6. mysql in 过滤 解决转义问题

    IF(headUser!='',instr(concat(',',headUser,','),concat(',',cr.headUser,',')),TRUE);

  7. conductor Workflow Metrics

    Server Metrics conductor使用spectator收集指标.https://github.com/Netflix/spectator 名称 目的 标签 workflow_serve ...

  8. Maven国内镜像-阿里云

    国外的maven下载速度堪忧,大部分国内网络访问都很慢国内的阿里云同样提供了maven的文件镜像使用:1.在maven的setting.xml加入下段代码即可使用阿里云的maven镜像 <mir ...

  9. Robotium原理初步--Android自动化测试学习历程

    章节:自动化基础篇——Robotium原理初步(第四讲) 主要讲解内容与笔记: 一.基于控件 1.spinner——下拉菜单 2.TabHost——左右滑动选择菜单,类似电话本 3.Gallery—— ...

  10. 利用Python和webhook实现自动提交代码

    最近在为公司书写项目的api文档,计划利用码云的wiki管理整个项目,公司自有git作为项目内容依托,这样全员都可参与,而我定期向码云推送就可以了. 问题 根据需求遇见了这样一个问题:我每次从git上 ...