比赛传送门

T1

Triangular Relationship

分析之后发现有两种情况:

1. n为奇数,那么所有数都是k的倍数。

2. n为偶数,那么所有数都是k/2的倍数。

然后就可以愉快A题了。

代码:

#include<bits/stdc++.h>
#define N 200005
#define ll long long
using namespace std;
inline ll read(){
    ll ans=0;
    char ch=getchar();
    while(!isdigit(ch))ch=getchar();
    while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
    return ans;
}
ll n,k;
int main(){
    n=read(),k=read();
    if(k&1){
        ll tmp=n/k;
        cout<<tmp*tmp*tmp;
    }
    else{
        ll tmp1=n/k,tmp2=tmp1;
        if(n%k>=k/2)++tmp2;
        cout<<tmp1*tmp1*tmp1+tmp2*tmp2*tmp2;
    }
    return 0;
}

T2

All Your Paths are Different Lengths

图的构造需要二进制拆分的思想。

我们把L拆分成1+2+4+…+2^n+tmp的形式。

然后对于i,i+1号点,我们连两条边,边权分别是0和2^(i-1)。

但这样有可能凑不出答案,因此需要将trnp二进制不唯一的位提出来建边。

代码:

#include<bits/stdc++.h>
using namespace std;
int l,cnt=0,tot=0,res,tmp,first[30];
struct edge{int u,v,w,next;}e[65];
inline void add(int u,int v,int w){e[++tot].u=u,e[tot].v=v,e[tot].w=w,e[tot].next=first[u],first[u]=tot;}
int main(){
    cin>>l,tmp=l,res=l;
    while(tmp)tmp>>=1,++cnt;
    for(int i=1;i<cnt;++i)add(i,i+1,0),add(i,i+1,(1<<(i-1)));
    res-=1<<(cnt-1);
    tmp=1<<(cnt-1);
    for(int i=0;i<=20;++i)if(((res>>i)&1))add(i+1,cnt,tmp),tmp+=1<<i;
    cout<<cnt<<' '<<tot<<'\n';
    for(int i=1;i<=tot;++i)cout<<e[i].u<<' '<<e[i].v<<' '<<e[i].w<<'\n';
    return 0;
}

T3

Stop. Otherwise…

感觉这题比T4难啊。。。

容斥原理+组合数。

我们将问题转化成对于每一个数,有多少种凑出来的方法。

这个东西可以用组合数算出来。

最终可以推出一个式子:

ansi=∑j=0,j≤k2(−1)j(k1+k2−j−1N+k1+k2−j−1)∗2k2−j∗(jk2)" role="presentation" style="position: relative;">ansi=∑j=0,j≤k2(−1)j(k1+k2−j−1N+k1+k2−j−1)∗2k2−j∗(jk2)ansi=∑j=0,j≤k2(−1)j(k1+k2−j−1N+k1+k2−j−1)∗2k2−j∗(jk2)

其中k2" role="presentation" style="position: relative;">k2k2是和为i的时候矛盾的对数,k1" role="presentation" style="position: relative;">k1k1是没有影响的种类数,j是方案中没有用的矛盾对数。

代码:

#include<bits/stdc++.h>
#define N 2005
#define mod 998244353
#define ll long long
using namespace std;
ll C[N<<1][N<<1],mul[N<<1];
int n,k;
inline ll calc(int i,int tot){
    int k2=min(k-i/2,(i-1)/2),k1=k-(k2<<1)-((i&1)==0);
    ll f=1,ret=0;
    for(int j=k2;j+k1>0&&j>=0;--j,f=-f)(ret+=f*C[j+k1+tot-1][j+k1-1]*mul[j]%mod*C[k2][j]%mod)%=mod;
    return (ret+mod)%mod;
}
inline ll read(){
    ll ans=0;
    char ch=getchar();
    while(!isdigit(ch))ch=getchar();
    while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
    return ans;
}
int main(){
    k=read();
    n=read();
    mul[0]=1;
    for(int i=1;i<=4000;++i)mul[i]=(mul[i-1]<<1)%mod;
    C[0][0]=1;
    for(int i=1;i<=4000;++i){
        C[i][0]=1;
        for(int j=1;j<=i;++j)C[i][j]=(C[i-1][j]+C[i-1][j-1])%mod;
    }
    ll tmp=0;
    for(int i=2;i<=2*k;++i){
        if(!(i&1))tmp=(calc(i,n)+calc(i,n-1))%mod;
        else tmp=calc(i,n);
        cout<<tmp<<'\n';
    }
    return 0;
}

T4

Revenge of BBuBBBlesort!

考试时只能用假算法过掉93个点,剩下的真没办法了。

其实很简单。

对于一个点,如果i!=a[i],那么这个点一定需要被换,否则一定不能被换,因此对于每一个点i,我们算出从i开始最多连续换的区间,然后检验这个区间能否使用某种方法换回去就行了。

时间复杂度O(n)" role="presentation" style="position: relative;">O(n)O(n)

代码:

#include<bits/stdc++.h>
#define N 300005
using namespace std;
int n,a[N];
inline int read(){
    int ans=0;
    char ch=getchar();
    while(!isdigit(ch))ch=getchar();
    while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
    return ans;
}
inline bool check(int l,int r){
    int mx=0,mn=n+1;
    for(int i=l;i<=r;++i)mx=max(mx,a[i]),mn=min(mn,a[i]);
    if(mx!=r||mn!=l)return false;
    int mx1=0,mx2=0;
    for(int i=l;i<=r;i+=2){
        if(mx1<a[i]&&mx2<a[i])mx1=a[i];
        else if(mx2<a[i])mx2=a[i];
        else return false;
    }
    return true;
}
int main(){
    n=read();
    for(int i=1;i<=n;++i)a[i]=read();
    for(int i=1;i<=n;++i){
        if(a[i]==i)continue;
        int p=i;
        while(p<=n-2){
            if(a[p+1]!=p+1||a[p+2]==p+2)break;
            p+=2;
        }
        if(!check(i,p)){puts("No");return 0;}
        i=p;
    }
    puts("Yes");
    return 0;
}

2018.09.02 Atcoder Regular Contest 102简要题解的更多相关文章

  1. 2018.09.08 AtCoder Beginner Contest 109简要题解

    比赛传送门 水题大赛? 全是水题啊!!! T1 ABC333 就是判断是不是两个数都是奇数就行了. 代码: #include<bits/stdc++.h> using namespace ...

  2. AtCoder Regular Contest 102

    AtCoder Regular Contest 102 C - Triangular Relationship 题意: 给出n,k求有多少个不大于n的三元组,使其中两两数字的和都是k的倍数,数字可以重 ...

  3. AtCoder Grand Contest 031 简要题解

    AtCoder Grand Contest 031 Atcoder A - Colorful Subsequence description 求\(s\)中本质不同子序列的个数模\(10^9+7\). ...

  4. AtCoder Regular Contest 102 E Stop. Otherwise...

    题目链接:atcoder 大意:有\(n\)个骰子,每个骰子上面有\(k\)个数,分别是\(1\text ~ k\),现在求\(\forall i\in[2...2k]\),求出有多少种骰子点数的组合 ...

  5. AtCoder Regular Contest 102 (ARC102) E - Stop. Otherwise... 排列组合

    原文链接https://www.cnblogs.com/zhouzhendong/p/ARD102E.html 题目传送门 - ARC102E 题意 有 $n$ 个取值为 $[1,k]$ 的骰子,对于 ...

  6. AtCoder Regular Contest 102 (ARC102) D All Your Paths are Different Lengths 构造

    原文链接https://www.cnblogs.com/zhouzhendong/p/ARC102D.html 题目传送门 - ARC102D 题意 给定 $L$,请你构造一个节点个数为 $n$ ,边 ...

  7. AtCoder Regular Contest 102 D - All Your Paths are Different Lengths

    D - All Your Paths are Different Lengths 思路: 二进制构造 首先找到最大的t,使得2^t <= l 然后我们就能构造一种方法使得正好存在 0 到 2^t ...

  8. AtCoder Grand Contest 039 简要题解

    从这里开始 比赛目录 Problem A Connection and Disconnection 简单讨论即可. Code #include <bits/stdc++.h> using ...

  9. AtCoder Grand Contest 040 简要题解

    从这里开始 比赛目录 A < B < E < D < C = F,心情简单.jpg. Problem A >< 把峰谷都设成 0. Code #include &l ...

随机推荐

  1. [Ora]-1309. OCI is not properly installed on this machine (NOE1/INIT)

    When the Oracle client software has not been properly installed, you will get an exception when tryi ...

  2. VB6单片机编程中的汉字处理

    在DOS时代,拥有一个华丽的汉字菜单几乎是每个高档中文应用程序必须的包装.中文Windows操作系统的出现使得高级开发平台实现全中文的提示和界面非常容易和方便.在一般的应用程序中已经很少需要去专门考虑 ...

  3. UI5-文档-2.1-使用OpenUI5开发应用

    使用OpenUI5和您选择的开发环境(编辑器和Web服务器)开发应用程序.您可以下载所有的源代码,也可以参考OpenUI5的在线版本. 下载OpenUI5 下载和安装OpenUI5的默认方式是从htt ...

  4. taskset: 让进程运行在指定的CPU 上

    观察发现4核CPU,只有第1个核心(CPU#0)非常忙,其他都处于idle状态. 不了解Linux是如何调度的,但目前显然有优化的余地.除了处理正常任务,CPU#0还需要处理每秒网卡中断.因此,若能将 ...

  5. 趣味编程:CPS风格代码(Java 8,Functional Java版)

    CPS风格代码(Java 8版) package fp; import java.util.function.IntConsumer; public class CPS { static int ad ...

  6. Spring 集成Hibernate的三种方式

    首先把hibernate的配置文件hibernate.cfg.xml放入spring的src目录下,并且为了便于测试导入了一个实体类Student.java以及它的Student.hbm.xml文件 ...

  7. scala --操作符和运算

    基本类型和操作 scala 的基本类型包括如下几种 数类型 ​ 整数类型 :Byte Short Int Long ​ 小数类型: Float Double 字符类型:Char 用'' 单引号包裹,是 ...

  8. 扩展C#与元编程(二)

    如果你对Windows Workflow Foundation(WF)一无所知,当看到扩展C#与元编程(一)中由MW编译器生成的FirstLook.mw.cs时,也许这么在想:我KAO,这是C#版的汇 ...

  9. MapReduce超时原因(Time out after 300 secs)

    目前碰到过三种原因导致 Time out after 300 secs. 1. 死循环 这是最常见的原因.显式的死循环很容易定位,隐式的死循环就比较麻烦了,比如正则表达式.曾经用一个网上抄来的邮箱正则 ...

  10. Mysql 内部默认排序

    mysql默认的排序: https://forums.mysql.com/read.php?21,239471,239688#msg-239688 Do not depend on order whe ...