4318: OSU!

Time Limit: 2 Sec  Memory Limit: 128 MB
Submit: 1473  Solved: 1174
[Submit][Status][Discuss]

Description

osu 是一款群众喜闻乐见的休闲软件。 
我们可以把osu的规则简化与改编成以下的样子: 
一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1个长度为n的01串。在这个串中连续的 X个1可以贡献X^3 的分数,这x个1不能被其他连续的1所包含(也就是极长的一串1,具体见样例解释) 
现在给出n,以及每个操作的成功率,请你输出期望分数,输出四舍五入后保留1位小数。 
 
 

Input

第一行有一个正整数n,表示操作个数。接下去n行每行有一个[0,1]之间的实数,表示每个操作的成功率。 
 
 

Output

只有一个实数,表示答案。答案四舍五入后保留1位小数。 
 

Sample Input

3
0.5
0.5
0.5

Sample Output

6.0

HINT

【样例说明】 
000分数为0,001分数为1,010分数为1,100分数为1,101分数为2,110分数为8,011分数为8,111分数为27,总和为48,期望为48/8=6.0 
N<=100000

Solution

期望DP,稍微推一下式子就行了(像我这样期望废的都能想出来!!)

设当前最长后缀1的长度为$x+1$,期望得分由上一位长度为$x$转移过来,增加的值有$3x^2+3x+1$,所以维护$x^2$和$x$的期望值就可以了。

Code

#include<bits/stdc++.h>
using namespace std; double x[], x2[], dp[], a[]; int main() {
int n;
scanf("%d", &n);
for(int i = ; i <= n; i ++) scanf("%lf", &a[i]);
for(int i = ; i <= n; i ++) {
x[i] = (x[i-] + ) * a[i];
x2[i] = (x2[i-] + * x[i-] + ) * a[i];
dp[i] = dp[i-] + ( * x2[i-] + * x[i-] + ) * a[i];
}
printf("%0.1lf", dp[n]);
return ;
}

【BZOJ】4318: OSU!【期望DP】的更多相关文章

  1. BZOJ 4318: OSU! 期望DP

    4318: OSU! 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4318 Description osu 是一款群众喜闻乐见的休闲软件 ...

  2. bzoj 4318 OSU! —— 期望DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4318 期望DP,因为平方的期望不等于期望的平方,所以用公式递推: 第一次推错了囧,还是看这位 ...

  3. BZOJ - 4318: OSU! (期望DP&Attention)

    Description osu 是一款群众喜闻乐见的休闲软件.  我们可以把osu的规则简化与改编成以下的样子:  一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1 ...

  4. BZOJ 4318 OSU! ——期望DP

    这次要求$x^3$的概率和. 直接维护三个值$x$ $x^2$ $x^3$的期望. 概率的平方不等于平方的概率. #include <map> #include <ctime> ...

  5. 【BZOJ】4318: OSU! 期望DP

    [题意]有一个长度为n的01序列,每一段极大的连续1的价值是L^3(长度L).现在给定n个实数表示该位为1的概率,求期望总价值.n<=10^5. [算法]期望DP [题解]后缀长度是一个很关键的 ...

  6. BZOJ 4318: OSU! 期望概率dp && 【BZOJ3450】【Tyvj1952】Easy 概率DP

    这两道题是一样的...... 我就说一下较难的那个 OSU!: 这道15行的水题我竟然做了两节课...... 若是f[i][0]=(1-p)*f[i-1][0]+(1-p)*f[i-1][1],f[i ...

  7. BZOJ 4318 OSU! (概率DP)

    题意 中文题面,难得解释了 题目传送门 分析 考虑到概率DPDPDP,显然可以想到f(i,j)f(i,j)f(i,j)表示到第iii位末尾有jjj个111的期望值.最后输出f(n+1,0)f(n+1, ...

  8. ●BZOJ 4318 OSU!

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4318题解: 期望dp 如果我们能够得到以每个位置结尾形成的连续1的长度的相关期望,那么问题就 ...

  9. 【BZOJ4318】OSU! 期望DP

    [BZOJ4318]OSU! Description osu 是一款群众喜闻乐见的休闲软件.  我们可以把osu的规则简化与改编成以下的样子:  一共有n次操作,每次操作只有成功与失败之分,成功对应1 ...

  10. bzoj 4318 OSU!

    期望dp. 考虑问题的简化版:一个数列有n个数,每位有pi的概率为1,否则为0.求以每一位结尾的全为1的后缀长度的期望. 递推就好了. l1[i]=(l1[i-1]+1)*p[i]+0*(1-p[i] ...

随机推荐

  1. flask基础之请求处理核心机制(五)

    前言 总结一下flask框架的请求处理流程. 系列文章 flask基础之安装和使用入门(一) flask基础之jijia2模板使用基础(二) flask基础之jijia2模板语言进阶(三) flask ...

  2. bash脚本里su命令执行

    俩种方法 1.可以使用 <<EOF 参数实现. 脚本内容:cat test.sh代码如下: #!/bin/bashsu - test <<EOFpwd;exit;EOF 2.当 ...

  3. MVC 视图页对数字,金额 用逗号 隔开(数字格式化)

    cshtml页面代码: <tr> <th>@Model.BankName</th> <th>@Model.Month</th> <th ...

  4. MVVM模式的 数据绑定

    数据绑定要达到的效果 数据绑定要达到什么效果呢,就是在界面中绑定了数据源之后,数据在界面上的修改能反映到绑定源,同时绑定源的修改也能反映到界面上.从界面反映到绑定的数据源是很容易理解的,因为在绑定过程 ...

  5. Robust Mesh Watermarking

    之前看了一篇题为"Robust Mesh Watermarking"的论文,查阅资料的时候发现了一篇与之很相似的名为"三维模型数字水印系统的设计与实现"的中文论 ...

  6. hdu 4349 求C(n,0),C(n,1),C(n,2)...C(n,n).当中有多少个奇数 (Lucas定理推广)

    Lucas定理:把n写成p进制a[n]a[n-1]a[n-2]...a[0],把m写成p进制b[n]b[n-1]b[n-2]...b[0],则C(n,m)与C(a[n],b[n])*C(a[n-1], ...

  7. 《精通Python设计模式》学习之原型模式

    暂时在工作中,还没有用到呢~~~ 以后要留意一下,主要用于复制对象副本, 然后又有自定义属性的地方. import copy from collections import OrderedDict c ...

  8. CCF CSP 201703-5 引水入城(50分)

    CCF计算机职业资格认证考试题解系列文章为meelo原创,请务必以链接形式注明本文地址 CCF CSP 201703-5 引水入城 问题描述 MF城建立在一片高原上.由于城市唯一的水源是位于河谷地带的 ...

  9. day5模块学习--hashlib模块

    hashlib模块     Python的hashlib提供了常见的摘要算法,如MD5,SHA1等等. 什么是摘要算法呢?摘要算法又称哈希算法.散列算法.它通过一个函数,把任意长度的数据转换为一个长度 ...

  10. Ionic实战九:ionic视频播放

    本模板和以前的方式不同,采用的是 iframe方式引入的视频,如下代码: