4318: OSU!

Time Limit: 2 Sec  Memory Limit: 128 MB
Submit: 1473  Solved: 1174
[Submit][Status][Discuss]

Description

osu 是一款群众喜闻乐见的休闲软件。 
我们可以把osu的规则简化与改编成以下的样子: 
一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1个长度为n的01串。在这个串中连续的 X个1可以贡献X^3 的分数,这x个1不能被其他连续的1所包含(也就是极长的一串1,具体见样例解释) 
现在给出n,以及每个操作的成功率,请你输出期望分数,输出四舍五入后保留1位小数。 
 
 

Input

第一行有一个正整数n,表示操作个数。接下去n行每行有一个[0,1]之间的实数,表示每个操作的成功率。 
 
 

Output

只有一个实数,表示答案。答案四舍五入后保留1位小数。 
 

Sample Input

3
0.5
0.5
0.5

Sample Output

6.0

HINT

【样例说明】 
000分数为0,001分数为1,010分数为1,100分数为1,101分数为2,110分数为8,011分数为8,111分数为27,总和为48,期望为48/8=6.0 
N<=100000

Solution

期望DP,稍微推一下式子就行了(像我这样期望废的都能想出来!!)

设当前最长后缀1的长度为$x+1$,期望得分由上一位长度为$x$转移过来,增加的值有$3x^2+3x+1$,所以维护$x^2$和$x$的期望值就可以了。

Code

#include<bits/stdc++.h>
using namespace std; double x[], x2[], dp[], a[]; int main() {
int n;
scanf("%d", &n);
for(int i = ; i <= n; i ++) scanf("%lf", &a[i]);
for(int i = ; i <= n; i ++) {
x[i] = (x[i-] + ) * a[i];
x2[i] = (x2[i-] + * x[i-] + ) * a[i];
dp[i] = dp[i-] + ( * x2[i-] + * x[i-] + ) * a[i];
}
printf("%0.1lf", dp[n]);
return ;
}

【BZOJ】4318: OSU!【期望DP】的更多相关文章

  1. BZOJ 4318: OSU! 期望DP

    4318: OSU! 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4318 Description osu 是一款群众喜闻乐见的休闲软件 ...

  2. bzoj 4318 OSU! —— 期望DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4318 期望DP,因为平方的期望不等于期望的平方,所以用公式递推: 第一次推错了囧,还是看这位 ...

  3. BZOJ - 4318: OSU! (期望DP&Attention)

    Description osu 是一款群众喜闻乐见的休闲软件.  我们可以把osu的规则简化与改编成以下的样子:  一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1 ...

  4. BZOJ 4318 OSU! ——期望DP

    这次要求$x^3$的概率和. 直接维护三个值$x$ $x^2$ $x^3$的期望. 概率的平方不等于平方的概率. #include <map> #include <ctime> ...

  5. 【BZOJ】4318: OSU! 期望DP

    [题意]有一个长度为n的01序列,每一段极大的连续1的价值是L^3(长度L).现在给定n个实数表示该位为1的概率,求期望总价值.n<=10^5. [算法]期望DP [题解]后缀长度是一个很关键的 ...

  6. BZOJ 4318: OSU! 期望概率dp && 【BZOJ3450】【Tyvj1952】Easy 概率DP

    这两道题是一样的...... 我就说一下较难的那个 OSU!: 这道15行的水题我竟然做了两节课...... 若是f[i][0]=(1-p)*f[i-1][0]+(1-p)*f[i-1][1],f[i ...

  7. BZOJ 4318 OSU! (概率DP)

    题意 中文题面,难得解释了 题目传送门 分析 考虑到概率DPDPDP,显然可以想到f(i,j)f(i,j)f(i,j)表示到第iii位末尾有jjj个111的期望值.最后输出f(n+1,0)f(n+1, ...

  8. ●BZOJ 4318 OSU!

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4318题解: 期望dp 如果我们能够得到以每个位置结尾形成的连续1的长度的相关期望,那么问题就 ...

  9. 【BZOJ4318】OSU! 期望DP

    [BZOJ4318]OSU! Description osu 是一款群众喜闻乐见的休闲软件.  我们可以把osu的规则简化与改编成以下的样子:  一共有n次操作,每次操作只有成功与失败之分,成功对应1 ...

  10. bzoj 4318 OSU!

    期望dp. 考虑问题的简化版:一个数列有n个数,每位有pi的概率为1,否则为0.求以每一位结尾的全为1的后缀长度的期望. 递推就好了. l1[i]=(l1[i-1]+1)*p[i]+0*(1-p[i] ...

随机推荐

  1. Struts2笔记2--动态方法调用和Action接收请求方式

    动态方法调用(在请求的时候,再明确具体的响应方法,配置的时候不明确): LoginAction类中有两个方法some和second 1. 动态方法的调用(修改常量struts.enable.Dynam ...

  2. 网页中嵌入swf文件的几种方法

    1. object + embed       传统的方法 优点:浏览器兼容性好,是 Macromedia 一直以来的官方方法缺点:a.embed 标签是不符合 W3C 的规范的,无法通过验证.当然, ...

  3. 2->集群架构主机优化流程

    集群架构优化流程: 有道笔记分享链接

  4. html元素分类

    目录 块级元素 内联元素 内联块级元素  总结 一.块级元素(block) 定义:默认情况下,独占一行的元素就是块级元素. 特点: 每个块级元素都从新的一行开始,并且其后的元素也另起一行.(真霸道,一 ...

  5. android解决AVD中文路径无法启动问题

    在as中新建一个AVD,然而启动时却报错,总之是不能找到中文路径 然后这个虚拟设备被默认安装在了C盘我的用户李敏啊,而我用户名是中文名导致无法识别 解决办法,使用链接文件格式修改虚拟设备配置路径, 比 ...

  6. 网络协议之TCP

    前言 近年来,随着信息技术的不断发展,各行各业也掀起了信息化浪潮,为了留住用户和吸引用户,各个企业力求为用户提供更好的信息服务,这也导致WEB性能优化成为了一个热点.据分析,网站速度越快,用户的黏性. ...

  7. Python基础 - Ubuntu+Nginx+uwsgi+supervisor部署Flask应用

    网上找了许多讲关于Flask应用部署的文章几乎都是一个helloworld的Demo,按照helloworld来部署都没问题,但实际项目部署时还是遇到了不少问题.在这里简单写下自己成功部署的过程,防止 ...

  8. Java容器---迭代器

    任何容器类,都必须有某种方式可以插入元素并将它们再次取回.毕竟,持有事物是容器最基本的工作. 对于List, add0是插入元素的方法之一,而get()是取出元素的方法之一. 如果从更高层的角度思考, ...

  9. Effective STL 学习笔记: 多用 vector & string

    Effective STL 学习笔记: 多用 vector & string 如果可能的话, 尽量避免自己去写动态分配的数组,转而使用 vector 和 string . 原书作者唯一想到的一 ...

  10. C#控制台应用程序之选课系统

    本程序以文本文件作为存储媒介,实现了一个简化版的选课系统,主要实现了以下功能 对学生信息的增删改查 对课程信息的增删改查 对学生选课的增删改查 using System; using System.C ...