4318: OSU!

Time Limit: 2 Sec  Memory Limit: 128 MB
Submit: 1473  Solved: 1174
[Submit][Status][Discuss]

Description

osu 是一款群众喜闻乐见的休闲软件。 
我们可以把osu的规则简化与改编成以下的样子: 
一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1个长度为n的01串。在这个串中连续的 X个1可以贡献X^3 的分数,这x个1不能被其他连续的1所包含(也就是极长的一串1,具体见样例解释) 
现在给出n,以及每个操作的成功率,请你输出期望分数,输出四舍五入后保留1位小数。 
 
 

Input

第一行有一个正整数n,表示操作个数。接下去n行每行有一个[0,1]之间的实数,表示每个操作的成功率。 
 
 

Output

只有一个实数,表示答案。答案四舍五入后保留1位小数。 
 

Sample Input

3
0.5
0.5
0.5

Sample Output

6.0

HINT

【样例说明】 
000分数为0,001分数为1,010分数为1,100分数为1,101分数为2,110分数为8,011分数为8,111分数为27,总和为48,期望为48/8=6.0 
N<=100000

Solution

期望DP,稍微推一下式子就行了(像我这样期望废的都能想出来!!)

设当前最长后缀1的长度为$x+1$,期望得分由上一位长度为$x$转移过来,增加的值有$3x^2+3x+1$,所以维护$x^2$和$x$的期望值就可以了。

Code

#include<bits/stdc++.h>
using namespace std; double x[], x2[], dp[], a[]; int main() {
int n;
scanf("%d", &n);
for(int i = ; i <= n; i ++) scanf("%lf", &a[i]);
for(int i = ; i <= n; i ++) {
x[i] = (x[i-] + ) * a[i];
x2[i] = (x2[i-] + * x[i-] + ) * a[i];
dp[i] = dp[i-] + ( * x2[i-] + * x[i-] + ) * a[i];
}
printf("%0.1lf", dp[n]);
return ;
}

【BZOJ】4318: OSU!【期望DP】的更多相关文章

  1. BZOJ 4318: OSU! 期望DP

    4318: OSU! 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4318 Description osu 是一款群众喜闻乐见的休闲软件 ...

  2. bzoj 4318 OSU! —— 期望DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4318 期望DP,因为平方的期望不等于期望的平方,所以用公式递推: 第一次推错了囧,还是看这位 ...

  3. BZOJ - 4318: OSU! (期望DP&Attention)

    Description osu 是一款群众喜闻乐见的休闲软件.  我们可以把osu的规则简化与改编成以下的样子:  一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1 ...

  4. BZOJ 4318 OSU! ——期望DP

    这次要求$x^3$的概率和. 直接维护三个值$x$ $x^2$ $x^3$的期望. 概率的平方不等于平方的概率. #include <map> #include <ctime> ...

  5. 【BZOJ】4318: OSU! 期望DP

    [题意]有一个长度为n的01序列,每一段极大的连续1的价值是L^3(长度L).现在给定n个实数表示该位为1的概率,求期望总价值.n<=10^5. [算法]期望DP [题解]后缀长度是一个很关键的 ...

  6. BZOJ 4318: OSU! 期望概率dp && 【BZOJ3450】【Tyvj1952】Easy 概率DP

    这两道题是一样的...... 我就说一下较难的那个 OSU!: 这道15行的水题我竟然做了两节课...... 若是f[i][0]=(1-p)*f[i-1][0]+(1-p)*f[i-1][1],f[i ...

  7. BZOJ 4318 OSU! (概率DP)

    题意 中文题面,难得解释了 题目传送门 分析 考虑到概率DPDPDP,显然可以想到f(i,j)f(i,j)f(i,j)表示到第iii位末尾有jjj个111的期望值.最后输出f(n+1,0)f(n+1, ...

  8. ●BZOJ 4318 OSU!

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4318题解: 期望dp 如果我们能够得到以每个位置结尾形成的连续1的长度的相关期望,那么问题就 ...

  9. 【BZOJ4318】OSU! 期望DP

    [BZOJ4318]OSU! Description osu 是一款群众喜闻乐见的休闲软件.  我们可以把osu的规则简化与改编成以下的样子:  一共有n次操作,每次操作只有成功与失败之分,成功对应1 ...

  10. bzoj 4318 OSU!

    期望dp. 考虑问题的简化版:一个数列有n个数,每位有pi的概率为1,否则为0.求以每一位结尾的全为1的后缀长度的期望. 递推就好了. l1[i]=(l1[i-1]+1)*p[i]+0*(1-p[i] ...

随机推荐

  1. 安装mysql5.5的时候出现Error Nr.1045

    解决办法: 1.删除注册表几个键值:HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\Eventlog\Application\MySQL HKEY_L ...

  2. oracle11g 创建id自增长监听器的步骤与问题

    首先,我们通过sql/plus先建个TEST表 sql语句: CTEATE TABLE TEST( ID NUMBER, NAME VARCHAR2(20), PRIMARY KEY(ID) ); 通 ...

  3. URIEncoding与useBodyEncodingForURI 在tomcat中文乱码处理上的区别

    大家知道tomcat5.0开始,对网页的中文字符的post或者get,经常会出现乱码现象. 具体是因为Tomcat默认是按ISO-8859-1进行URL解码,ISO-8859-1并未包括中文字符,这样 ...

  4. 好用的工具---screen命令

    问 题场景:要在服务器上配置环境,但是我的电脑无法直接连到服务器上,通常要经过好几次ssh跳转.配环境需要设置好几个用户,这自然需要同时打开好几个连 接服务器的终端窗口,每个连接到服务器的终端窗口都要 ...

  5. 利用vw+rem实现移动web适配布局

    基本概念 1.单位 Px(CSS pixels) 像素 (px) 是一种绝对单位(absolute units), 因为无论其他相关的设置怎么变化,像素指定的值是不会变化的 其实是相对于某个设备而言的 ...

  6. html5拖拽初窥

    说到拖动,大概有两种方式,一种是js实现,之前已经介绍过,今天来讲解另外一种方式,那就是使用html5实现拖动. css样式 .box { width: 200px; height: 200px; b ...

  7. show engine innodb status 详细介绍

    Contents Header1 SEMAPHORES. 1 LATEST DETECTED DEADLOCK. 3 TRANSACTIONS. 5 什么是purge操作... 5 FILE I/O. ...

  8. window时间同步机制的简单介绍

    1 window自身现在采用w32tm程序来进行时间校正,window自身携带NTP程序,但默认下时关闭的,默认的NTP时客户端. 2 w32tm时用来代替早期的时钟同步程序net  time 3 w ...

  9. DOS命令大全(一)

    #1 一: net use \\ip\ipc$ " " /user:" " 建立IPC空链接 net use \\ip\ipc$ "密码" ...

  10. [android] The_connection_to_adb_is_down__and_a_severe_error_has_occured解决方案

    初学安卓,这是我碰到的第一个问题,从网上找了些解决方法,同时也把问题解决了. 方案一 1.先把eclipse关闭. 2.在管理器转到你的android SDK 的platform-tools下, 如图 ...