word-ladder总结
title: word ladder总结
categories: LeetCode
tags:
- 算法
- LeetCode
comments: true
date: 2016-10-16 09:42:30
题意
Given two words (beginWord and endWord), and a dictionary's word list, find the length of shortest transformation sequence from beginWord to endWord, such that:
Only one letter can be changed at a time
Each intermediate word must exist in the word list
For example,
Given:
beginWord = "hit"
endWord = "cog"
wordList = ["hot","dot","dog","lot","log"]
As one shortest transformation is "hit" -> "hot" -> "dot" -> "dog" -> "cog",
return its length 5.
Note:
Return 0 if there is no such transformation sequence.
All words have the same length.
All words contain only lowercase alphabetic characters.
思路
因为上一个词到下一个词之间,变化的只是一个字母,因此只需遍历所有字母,进行替换即可;
利用BFS的思想,将改变后的字符串存进队列中,进行下一次的循环。
题解
这个的题解有很多种,但是其实都是使用了最基本的BFS思想;
交换队列,计算层数
int ladderLength(string begin, string end, unordered_set<string>& wordList) {
// 当前层,下一层
queue<string> current, next;
// 判重
unordered_set<string> visited;
// 层次
int level = 0;
bool found = false;
// 有点像内联函数
auto state_is_target = [&](const string &s) {
return s == end;
};
auto state_extend = [&](const string &s) {
vector<string> result;
for (size_t i = 0; i < s.size(); ++i) {
string new_word(s);
for (char c = 'a'; c <= 'z'; c++) {
if (c == new_word[i]) continue;
swap(c, new_word[i]);
if (wordList.count(new_word) > 0 && !visited.count(new_word)) {
result.push_back(new_word);
visited.insert(new_word);
}
swap(c, new_word[i]);
}
}
return result;
};
current.push(begin);
while (!current.empty() && !found) {
++level;
while (!current.empty() && !found) {
const string str = current.front();
current.pop();
const auto& new_states = state_extend(str);
for (const auto& state : new_states) {
next.push(state);
if (state_is_target(state)) {
//找到
found = true;
break;
}
}
}
swap(next, current);
}
if (found) return level + 1;
else return 0;
}
总结:
使用了匿名函数,其中命名的state_is_target,state_extend是函数模版,分别做的操作就是判断字符串是否相等,返回字符串BFS遍历的下一层的数组;
同时用了两层循环,外循环用于计算层数和交换队列,内循环用于计算找到结尾字符串;
一个队列
/**
* 改变单词中的字母, 查看是否存在
*
* @param word <#word description#>
* @param wordDict <#wordDict description#>
* @param toVisit <#toVisit description#>
*/
void addNextWords(string word, unordered_set<string>& wordDict, queue<string>& toVisit) {
// 删除wordDict中的word,因为相同的没有用
wordDict.erase(word);
for (int i = 0; i < (int)word.length(); i++) {
// 记录下word的字母
char letter = word[i];
// 变换word中每个字母,一个一个字母的查找是否匹配,因为只能替换一个字母
for (int j = 0; j < 26; j++) {
word[i] = 'a' + j;
// 找到后加入访问过的队列,并从wordDict中删除
if (wordDict.find(word) != wordDict.end()) {
toVisit.push(word);
wordDict.erase(word);
}
}
// 变换回去
word[i] = letter;
}
}
/**
* 使用BFS
*
* @param beginWord <#beginWord description#>
* @param endWord <#endWord description#>
* @param wordDict <#wordDict description#>
*
* @return <#return value description#>
*/
int ladderLength2(string beginWord, string endWord, unordered_set<string>& wordDict) {
// 加载最后的单词
wordDict.insert(endWord);
queue<string> toVisit;
addNextWords(beginWord, wordDict, toVisit);
// 从2开始,是因为需要经历开始和结尾的两个字母
int dist = 2;
// toVisit中存储的是通过改变一个字母就可以到达wordDict中存在的字符串
while (!toVisit.empty()) {
int num = (int)toVisit.size();
for (int i = 0; i < num; i++) {
string word = toVisit.front();
toVisit.pop();
if (word == endWord) return dist;
addNextWords(word, wordDict, toVisit);
}
dist++;
}
return 0;
}
总结:
同样是计算BFS的层数;
两个指针
/**
* 使用两个指针和BFS
*
* @param beginWord <#beginWord description#>
* @param endWord <#endWord description#>
* @param wordDict <#wordDict description#>
*
* @return <#return value description#>
*/
int ladderLength3(string beginWord, string endWord, unordered_set<string>& wordDict) {
unordered_set<string> head, tail, *phead, *ptail;
head.insert(beginWord);
tail.insert(endWord);
int dist = 2;
// 将phead指向更小size的unordered_set以便减少运行时间
while (!head.empty() && !tail.empty()) {
if (head.size() < tail.size()) {
phead = &head;
ptail = &tail;
}
else {
phead = &tail;
ptail = &head;
}
unordered_set<string> temp;
for (auto iterator = phead->begin(); iterator != phead->end(); iterator++) {
string word = *iterator;
wordDict.erase(word);
// 原理和上面一样,更换其中的字符,
for (int i = 0; i < (int)word.length(); i++) {
char letter = word[i];
for (int k = 0; k < 26; k++) {
word[i] = 'a' + k;
if (ptail->find(word) != ptail->end())
return dist;
if (wordDict.find(word) != wordDict.end()) {
temp.insert(word);
wordDict.erase(word);
}
}
word[i] = letter;
}
}
dist++;
swap(*phead, temp);
}
return 0;
}
总结:
两个指针指向了unordered_set的head和tail,其做法和第一种方法是相通的,只不过一个用了unordered_set,同时在循环前面还加上了根据数组大小判断指针指向不同的数组;
使用类
class WordNode {
public:
string word;
int numSteps;
public:
WordNode(string w, int n) {
this->word = w;
this->numSteps = n;
}
};
/**
* 使用类去处理记录数据,和前面的思想是类似的
*
* @param beginWord <#beginWord description#>
* @param endWord <#endWord description#>
* @param wordDict <#wordDict description#>
*
* @return <#return value description#>
*/
int ladderLength4(string beginWord, string endWord, unordered_set<string>& wordDict) {
queue<WordNode*> queue;
queue.push(new WordNode(beginWord, 1));
wordDict.insert(endWord);
while (!queue.empty()) {
WordNode * top = queue.front();
queue.pop();
string word = top->word;
if (word == endWord) {
return top->numSteps;
}
for (int i = 0; i < word.length(); i++) {
char temp = word[i]; //先记录后面还有改回来
for (char c = 'a'; c <= 'z'; c++) {
if (temp != c) {
word[i] = c;
}
if (wordDict.find(word) != wordDict.end()) {
queue.push(new WordNode(word, top->numSteps + 1));
wordDict.erase(word);
}
}
word[i] = temp;
}
}
return 0;
}
总结:
使用类去记录每个字符串的单前遍历的层数,本质还是计算层数,只不过用类去保存,这样的好处就是减少了一些计算代码;
题意
Given two words (beginWord and endWord), and a dictionary's word list, find all shortest transformation sequence(s) from beginWord to endWord, such that:
Only one letter can be changed at a time
Each intermediate word must exist in the word list
For example,
Given:
beginWord = "hit"
endWord = "cog"
wordList = ["hot","dot","dog","lot","log"]
Return
[
["hit","hot","dot","dog","cog"],
["hit","hot","lot","log","cog"]
]
Note:
All words have the same length.
All words contain only lowercase alphabetic characters.
思路
肯定需要两个数组,一个用来存储当前已经存在的字符串,一个用来存放遍历结果的字符串,最后两者进行交换,直到遍历当前数组为空;还有一个重点在于可以利用邻接矩阵的思想,用map存储字符串和数组一一对应关系,最后根据顺序进行输出map即可;
代码
vector<string> temp_path;
vector<vector<string>> result_path;
/**
* 生成路径(从后往前)
*
* @param unordered_map<string <#unordered_map<string description#>
* @param path <#path description#>
* @param start <#start description#>
* @param end <#end description#>
*/
void generatePath(unordered_map<string, unordered_set<string>>& path, const string& start, const string& end) {
temp_path.push_back(start);
if (start == end) {
vector<string> ret = temp_path;
reverse(ret.begin(), ret.end());
result_path.push_back(ret);
return ;
}
for (auto it = path[start].begin(); it != path[start].end(); it++) {
generatePath(path, *it, end);
temp_path.pop_back();
}
}
/**
*
*
* @param beginWord <#beginWord description#>
* @param endWord <#endWord description#>
* @param wordList <#wordList description#>
*
* @return <#return value description#>
*/
vector<vector<string>> findLadders(string beginWord, string endWord, unordered_set<string> &wordList) {
temp_path.clear();
result_path.clear();
unordered_set<string> current_step;
unordered_set<string> next_step;
unordered_map<string, unordered_set<string>> path;
unordered_set<string> unvisited = wordList; // 记录还没有访问过的结点
if (unvisited.count(beginWord) > 0)
unvisited.erase(beginWord);
// 未访问过的值增加结尾字符串,开始处加入起点字符串
unvisited.insert(endWord);
current_step.insert(beginWord);
while (current_step.count(endWord) == 0 && unvisited.size() > 0) {
// 遍历当前层的所有元素
for (auto cur = current_step.begin(); cur != current_step.end(); cur++) {
string word = *cur;
// 给字符串中的每个字符都替换字母
for (int i = 0; i < beginWord.size(); i++) {
for (int j = 0; j < 26; j++) {
string tmp = word;
// 相等情况下
if (tmp[i] == 'a' + j) {
continue;
}
tmp[i] = 'a' + j;
// 表明字典中存在该字符串,可以到达下一步
if (unvisited.count(tmp) > 0) {
next_step.insert(tmp);
path[tmp].insert(word);
}
}
}
}
// 表明下一层中已经不存在任何没有访问过的
if (next_step.empty()) {
break;
}
// 清除所有没有访问过的值
for (auto it = next_step.begin(); it != next_step.end(); it++) {
unvisited.erase(*it);
}
current_step = next_step;
next_step.clear();
}
// 存在结果
if (current_step.count(endWord) > 0) {
generatePath(path, endWord, beginWord);
}
return result_path;
}
/**
* 建立树
*
* @param forward <#forward description#>
* @param backward <#backward description#>
* @param dict <#dict description#>
* @param unordered_map<string <#unordered_map<string description#>
* @param tree <#tree description#>
* @param reversed <#reversed description#>
*
* @return <#return value description#>
*/
bool buildTree(unordered_set<string> &forward, unordered_set<string> &backward, unordered_set<string> &dict, unordered_map<string, vector<string> > &tree, bool reversed)
{
if (forward.empty()) return false;
// 如果开头的长度比结尾长,则从结尾开始找到开头
if (forward.size() > backward.size())
return buildTree(backward, forward, dict, tree, !reversed);
// 存在开头和结尾则删除
for (auto &word: forward) dict.erase(word);
for (auto &word: backward) dict.erase(word);
unordered_set<string> nextLevel; // 存储树的下一层
bool done = false; //是否进一步搜索
for (auto &it: forward) //从树的当前层进行遍历
{
string word = it;
for (auto &c: word)
{
char c0 = c; //存储初始值
for (c = 'a'; c <= 'z'; ++c)
{
if (c != c0)
{
// 说明找到最终结果
if (backward.count(word))
{
done = true; //找到
!reversed ? tree[it].push_back(word) : tree[word].push_back(it); //keep the tree generation direction consistent;
}
// 说明还没找到最终结果但是在字典中找到
else if (!done && dict.count(word))
{
nextLevel.insert(word);
!reversed ? tree[it].push_back(word) : tree[word].push_back(it);
}
}
}
c = c0; //restore the word;
}
}
return done || buildTree(nextLevel, backward, dict, tree, reversed);
}
/**
* 生成路径
*
* @param beginWord <#beginWord description#>
* @param endWord <#endWord description#>
* @param unordered_map<string <#unordered_map<string description#>
* @param tree <#tree description#>
* @param path <#path description#>
* @param paths <#paths description#>
*/
void getPath(string &beginWord, string &endWord, unordered_map<string, vector<string> > &tree, vector<string> &path, vector<vector<string> > &paths) //using reference can accelerate;
{
if (beginWord == endWord) paths.push_back(path); //till the end;
else
{
for (auto &it: tree[beginWord])
{
path.push_back(it);
getPath(it, endWord, tree, path, paths); //DFS retrieving the path;
path.pop_back();
}
}
}
vector<vector<string>> findLadders2(string beginWord, string endWord, unordered_set<string> &dict) {
vector<vector<string> > paths;
vector<string> path(1, beginWord);
if (beginWord == endWord)
{
paths.push_back(path);
return paths;
}
// 分别存储开头和结尾
unordered_set<string> forward, backward;
forward.insert(beginWord);
backward.insert(endWord);
unordered_map<string, vector<string> > tree;
// 用来判断是从开头找到结尾还是从结尾找到开头,因为会从长度短的一方开始进行查找
bool reversed = false;
if (buildTree(forward, backward, dict, tree, reversed))
getPath(beginWord, endWord, tree, path, paths);
return paths;
}
bool test() {
unordered_set<string> words = {"hot","dot","dog","lot","log"};
string start = "hit", end = "cog";
vector<vector<string>> result = findLadders2(start, end, words);
for (auto i = 0; i < result.size(); ++i) {
for (auto j = 0; j < result[0].size(); ++j) {
cout << result[i][j] << "->";
}
cout << endl;
}
return true;
}
这两种方法其实是一样的;
word-ladder总结的更多相关文章
- [LeetCode] Word Ladder 词语阶梯
Given two words (beginWord and endWord), and a dictionary, find the length of shortest transformatio ...
- [LeetCode] Word Ladder II 词语阶梯之二
Given two words (start and end), and a dictionary, find all shortest transformation sequence(s) from ...
- LeetCode:Word Ladder I II
其他LeetCode题目欢迎访问:LeetCode结题报告索引 LeetCode:Word Ladder Given two words (start and end), and a dictiona ...
- 【leetcode】Word Ladder
Word Ladder Total Accepted: 24823 Total Submissions: 135014My Submissions Given two words (start and ...
- 【leetcode】Word Ladder II
Word Ladder II Given two words (start and end), and a dictionary, find all shortest transformation ...
- 18. Word Ladder && Word Ladder II
Word Ladder Given two words (start and end), and a dictionary, find the length of shortest transform ...
- [Leetcode][JAVA] Word Ladder II
Given two words (start and end), and a dictionary, find all shortest transformation sequence(s) from ...
- LeetCode127:Word Ladder II
题目: Given two words (start and end), and a dictionary, find all shortest transformation sequence(s) ...
- 【LeetCode OJ】Word Ladder II
Problem Link: http://oj.leetcode.com/problems/word-ladder-ii/ Basically, this problem is same to Wor ...
- 【题解】【字符串】【BFS】【Leetcode】Word Ladder
Given two words (start and end), and a dictionary, find the length of shortest transformation sequen ...
随机推荐
- 阿里面试回来,想和Java程序员谈一谈
引言 其实本来真的没打算写这篇文章,主要是LZ得记忆力不是很好,不像一些记忆力强的人,面试完以后,几乎能把自己和面试官的对话都给记下来.LZ自己当初面试完以后,除了记住一些聊过的知识点以外,具体的内容 ...
- aarch64_c2
collectd-5.7.2-5.fc26.aarch64.rpm 2017-06-18 21:17 634K fedora Mirroring Project collectd-amqp-5.7.2 ...
- 事件,继承EventArgs带有参数的委托
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- MVVM模式用依赖注入的方式配置ViewModel并注册消息
最初的想法 这次主要讨论下给View指定ViewModel的事情.一般来说给View指定ViewModel常用的方式有两种,一种是在View的后台代码中写DataContext = new ViewM ...
- 001_Mac键盘图标与对应快捷按键标志汇总
Mac键盘图标与对应快捷按键 ⌘——Command () win键 ⌃ ——Control ctrl键 ⌥——Option (alt) ⇧——Shift ⇪——Caps Lock fn——功能键就是 ...
- python中的多进程
具体参考这个博客地址:http://www.cnblogs.com/lxmhhy/p/6052167.html
- php单双引号嵌套解决方案
代码如下: <?php $path = "./"; function show_files($path){ //下面是单双引号嵌套解决方案 //echo "< ...
- 大家来探讨下,IRepository 应该怎么定义?
ORM已EF为例子:我见的最多的是泛型的IRepository, public partial interface IRepository<T> where T : BaseEntity{ ...
- Linux mint 17.3系统安装及常用开发办公软件部署
关于为什么选择linuxmint17.3作为个人办公开发系统的选择说明: 编者按]提起Linux系统,大家可能最先想到的就是 Linux Mint 和 Ubuntu 两个版本了.近来,开源界貌似激进了 ...
- WebApi 插件式构建方案:集成加载数据库连接字符串
body { border: 1px solid #ddd; outline: 1300px solid #fff; margin: 16px auto; } body .markdown-body ...