luoguP4336 [SHOI2016]黑暗前的幻想乡 容斥原理 + 矩阵树定理
自然地想到容斥原理
然后套个矩阵树就行了
求行列式的时候只有换行要改变符号啊QAQ
复杂度为\(O(2^n * n^3)\)
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define ri register int
#define rep(io, st, ed) for(ri io = st; io <= ed; io ++)
#define drep(io, ed, st) for(ri io = ed; io >= st; io --)
const int sid = 20;
const int mod = 1e9 + 7;
inline void inc(int &a, int b) { a += b; if(a >= mod) a -= mod; }
inline void dec(int &a, int b) { a -= b; if(a < 0) a += mod; }
inline int mul(int a, int b) { return 1ll * a * b % mod; }
inline int inv(int a) {
int ret = 1;
for(int k = mod - 2; k; k >>= 1, a = mul(a, a))
if(k & 1) ret = mul(ret, a);
return ret;
}
int N, ans;
int M[sid], G[sid][sid];
struct edge { int u, v; } E[sid][400];
inline int Guass(int n) {
int sign = 1;
rep(i, 1, n) {
int pos = i;
rep(j, i + 1, n) if(G[j][i]) pos = j;
swap(G[i], G[pos]);
if(i != pos) sign *= -1;
if(!G[i][i]) return 0;
int Inv = inv(G[i][i]);
rep(j, i + 1, n) {
int t = mul(G[j][i], Inv);
rep(k, i, n) dec(G[j][k], mul(G[i][k], t));
}
}
int ret = 1;
rep(i, 1, n) ret = mul(ret, G[i][i]);
if(sign == 1) return ret;
else return mod - ret;
}
inline int calc(int S) {
memset(G, 0, sizeof(G));
rep(i, 1, N - 1) {
if(!(S & (1 << i - 1))) continue;
rep(j, 1, M[i]) {
int u = E[i][j].u, v = E[i][j].v;
inc(G[u][u], 1); inc(G[v][v], 1);
dec(G[u][v], 1); dec(G[v][u], 1);
}
}
return Guass(N - 1);
}
inline void dfs(int o, int S, int num) {
if(o == N) {
if((N - 1 - num) & 1) dec(ans, calc(S));
else inc(ans, calc(S));
return;
}
dfs(o + 1, S, num);
dfs(o + 1, S | (1 << o - 1), num + 1);
}
int main() {
freopen("pp.in", "r", stdin);
cin >> N;
rep(i, 1, N - 1) {
cin >> M[i];
rep(j, 1, M[i])
cin >> E[i][j].u >> E[i][j].v;
}
dfs(1, 0, 0);
printf("%d\n", ans);
return 0;
}
luoguP4336 [SHOI2016]黑暗前的幻想乡 容斥原理 + 矩阵树定理的更多相关文章
- 【bzoj4596】[Shoi2016]黑暗前的幻想乡 容斥原理+矩阵树定理
题目描述 给出 $n$ 个点和 $n-1$ 种颜色,每种颜色有若干条边.求这张图多少棵每种颜色的边都出现过的生成树,答案对 $10^9+7$ 取模. 输入 第一行包含一个正整数 N(N<=17) ...
- [luogu3244 SHOI2016] 黑暗前的幻想乡(容斥原理+矩阵树定理)
传送门 Description 给出 n 个点和 n−1 种颜色,每种颜色有若干条边.求这张图多少棵每种颜色的边都出现过的生成树,答案对 109+7 取模. Input 第一行包含一个正整数 N(N& ...
- 【bzoj4596】[Shoi2016]黑暗前的幻想乡 (矩阵树定理+容斥)
Description 四年一度的幻想乡大选开始了,最近幻想乡最大的问题是很多来历不明的妖怪涌入了幻想乡,扰乱了幻想乡昔日的秩序.但是幻想乡的建制派妖怪(人类)博丽灵梦和八云紫等人整日高谈所有妖怪平等 ...
- 【BZOJ4596】黑暗前的幻想乡(矩阵树定理,容斥)
[BZOJ4596]黑暗前的幻想乡(矩阵树定理,容斥) 题面 BZOJ 有\(n\)个点,要求连出一棵生成树, 指定了一些边可以染成某种颜色,一共\(n-1\)种颜色, 求所有颜色都出现过的生成树方案 ...
- bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥)
bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥) bzoj Luogu 题解时间 看一看数据范围,求生成树个数毫无疑问直接上矩阵树定理. 但是要求每条边都 ...
- bzoj4596[Shoi2016]黑暗前的幻想乡 Matrix定理+容斥原理
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 464 Solved: 264[Submit][Sta ...
- 【BZOJ 4596】 4596: [Shoi2016]黑暗前的幻想乡 (容斥原理+矩阵树定理)
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 324 Solved: 187 Description ...
- P4336 [SHOI2016]黑暗前的幻想乡
P4336 [SHOI2016]黑暗前的幻想乡 矩阵树定理(高斯消元+乘法逆元)+容斥 ans=总方案数 -(公司1未参加方案数 ∪ 公司2未参加方案数 ∪ 公司3未参加方案数 ∪ ...... ∪ ...
- 【BZOJ4596】[Shoi2016]黑暗前的幻想乡 容斥+矩阵树定理
[BZOJ4596][Shoi2016]黑暗前的幻想乡 Description 幽香上台以后,第一项措施就是要修建幻想乡的公路.幻想乡有 N 个城市,之间原来没有任何路.幽香向选民承诺要减税,所以她打 ...
随机推荐
- 字典树&&01字典树专题&&对字典树的理解
对于字典树和01字典树的一点理解: 首先,字典树建树的过程就是按照每个数的前缀来的,如果你要存储一个全小写字母字符串,那么这个树每一个节点最多26个节点,这样的话,如果要找特定的单词的话,按照建树的方 ...
- UNIX环境高级编程 第5章 标准I/O库
本章是关于C语言标准I/O库的,之所以在UNIX类系统的编程中会介绍C语言标准库,主要是因为UNIX和C之间具有密不可分的关系.由于UNIX系统存在很多实现,而每个实现都有自己的标准I/O库,为了统一 ...
- Sublime2编译Python程序EOFError:EOF when reading a line解决方法【转】
在Sublime2中编译运行Python文件时,如果代码中包含用户输入的函数时(eg. raw_input()),Ctrl+b编译运行之后会提示以下错误: 解决方法:安装SublimeREPL打开Su ...
- Python操作Excle
python操作excel主要用到xlrd和xlwt这两个库,即xlrd是读excel,xlwt是写excel的库.可从这里下载https://pypi.python.org/pypi.下面分别记录p ...
- liunx系统top命令详解
ps: 1.按1可以进行 CPU各个和总CPU汇总的切换2.cpu0是最关键的,总控管理各个CPU 3.默认情况下仅显示比较重要的 PID.USER.PR.NI.VIRT.RES.SHR.S.%CPU ...
- nfs挂载出错:mount.nfs: access denied by server while mounting
这个问题就是服务器不允许客户端去挂载,那么修改服务端的权限 $ sudo vi /etc/hosts.deny 文本末添加 ### NFS DAEMONS portmap: ALL lockd: AL ...
- 强大的vi的几个功能
1 拷贝第十行到第十三行到文件a中,不用!亦可 : 比如你要拷贝从第10行到第109行到文件123.txt中,可以用以下的命令:10,109w!123.txt
- 牛客红包OI赛 B 小可爱序列
Description 链接:https://ac.nowcoder.com/acm/contest/224/B 来源:牛客网 "我愿意舍弃一切,以想念你,终此一生." " ...
- Django基础 - 修改默认SQLite3数据库连接为MySQL
Django数据库连接默认为SQLite3,打开setting.py可以看到数据库部分的配置如下: DATABASES = { 'default': { 'ENGINE': 'django.db.ba ...
- sql中多层循环示例(有游标)
在需求处理中,我们会遇到需要通过SQL多层循环来处理的问题.如:A表中有8条数据,B表中有10条数据,需要实现A表中的每1条数据对应B表中的10条数据,最后就有了80条数据,从而实现一对多的关系.那如 ...