自然地想到容斥原理

然后套个矩阵树就行了

求行列式的时候只有换行要改变符号啊QAQ

复杂度为\(O(2^n * n^3)\)


#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; #define ri register int
#define rep(io, st, ed) for(ri io = st; io <= ed; io ++)
#define drep(io, ed, st) for(ri io = ed; io >= st; io --) const int sid = 20;
const int mod = 1e9 + 7;
inline void inc(int &a, int b) { a += b; if(a >= mod) a -= mod; }
inline void dec(int &a, int b) { a -= b; if(a < 0) a += mod; }
inline int mul(int a, int b) { return 1ll * a * b % mod; }
inline int inv(int a) {
int ret = 1;
for(int k = mod - 2; k; k >>= 1, a = mul(a, a))
if(k & 1) ret = mul(ret, a);
return ret;
} int N, ans;
int M[sid], G[sid][sid];
struct edge { int u, v; } E[sid][400]; inline int Guass(int n) {
int sign = 1;
rep(i, 1, n) {
int pos = i;
rep(j, i + 1, n) if(G[j][i]) pos = j;
swap(G[i], G[pos]);
if(i != pos) sign *= -1;
if(!G[i][i]) return 0;
int Inv = inv(G[i][i]);
rep(j, i + 1, n) {
int t = mul(G[j][i], Inv);
rep(k, i, n) dec(G[j][k], mul(G[i][k], t));
}
}
int ret = 1;
rep(i, 1, n) ret = mul(ret, G[i][i]);
if(sign == 1) return ret;
else return mod - ret;
} inline int calc(int S) {
memset(G, 0, sizeof(G));
rep(i, 1, N - 1) {
if(!(S & (1 << i - 1))) continue;
rep(j, 1, M[i]) {
int u = E[i][j].u, v = E[i][j].v;
inc(G[u][u], 1); inc(G[v][v], 1);
dec(G[u][v], 1); dec(G[v][u], 1);
}
}
return Guass(N - 1);
} inline void dfs(int o, int S, int num) {
if(o == N) {
if((N - 1 - num) & 1) dec(ans, calc(S));
else inc(ans, calc(S));
return;
}
dfs(o + 1, S, num);
dfs(o + 1, S | (1 << o - 1), num + 1);
} int main() {
freopen("pp.in", "r", stdin);
cin >> N;
rep(i, 1, N - 1) {
cin >> M[i];
rep(j, 1, M[i])
cin >> E[i][j].u >> E[i][j].v;
}
dfs(1, 0, 0);
printf("%d\n", ans);
return 0;
}

luoguP4336 [SHOI2016]黑暗前的幻想乡 容斥原理 + 矩阵树定理的更多相关文章

  1. 【bzoj4596】[Shoi2016]黑暗前的幻想乡 容斥原理+矩阵树定理

    题目描述 给出 $n$ 个点和 $n-1$ 种颜色,每种颜色有若干条边.求这张图多少棵每种颜色的边都出现过的生成树,答案对 $10^9+7$ 取模. 输入 第一行包含一个正整数 N(N<=17) ...

  2. [luogu3244 SHOI2016] 黑暗前的幻想乡(容斥原理+矩阵树定理)

    传送门 Description 给出 n 个点和 n−1 种颜色,每种颜色有若干条边.求这张图多少棵每种颜色的边都出现过的生成树,答案对 109+7 取模. Input 第一行包含一个正整数 N(N& ...

  3. 【bzoj4596】[Shoi2016]黑暗前的幻想乡 (矩阵树定理+容斥)

    Description 四年一度的幻想乡大选开始了,最近幻想乡最大的问题是很多来历不明的妖怪涌入了幻想乡,扰乱了幻想乡昔日的秩序.但是幻想乡的建制派妖怪(人类)博丽灵梦和八云紫等人整日高谈所有妖怪平等 ...

  4. 【BZOJ4596】黑暗前的幻想乡(矩阵树定理,容斥)

    [BZOJ4596]黑暗前的幻想乡(矩阵树定理,容斥) 题面 BZOJ 有\(n\)个点,要求连出一棵生成树, 指定了一些边可以染成某种颜色,一共\(n-1\)种颜色, 求所有颜色都出现过的生成树方案 ...

  5. bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥)

    bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥) bzoj Luogu 题解时间 看一看数据范围,求生成树个数毫无疑问直接上矩阵树定理. 但是要求每条边都 ...

  6. bzoj4596[Shoi2016]黑暗前的幻想乡 Matrix定理+容斥原理

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 464  Solved: 264[Submit][Sta ...

  7. 【BZOJ 4596】 4596: [Shoi2016]黑暗前的幻想乡 (容斥原理+矩阵树定理)

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 324  Solved: 187 Description ...

  8. P4336 [SHOI2016]黑暗前的幻想乡

    P4336 [SHOI2016]黑暗前的幻想乡 矩阵树定理(高斯消元+乘法逆元)+容斥 ans=总方案数 -(公司1未参加方案数 ∪ 公司2未参加方案数 ∪ 公司3未参加方案数 ∪ ...... ∪ ...

  9. 【BZOJ4596】[Shoi2016]黑暗前的幻想乡 容斥+矩阵树定理

    [BZOJ4596][Shoi2016]黑暗前的幻想乡 Description 幽香上台以后,第一项措施就是要修建幻想乡的公路.幻想乡有 N 个城市,之间原来没有任何路.幽香向选民承诺要减税,所以她打 ...

随机推荐

  1. python作业堡垒机(第十三周)

    作业需求: 1. 所有的用户操作日志要保留在数据库中 2. 每个用户登录堡垒机后,只需要选择具体要访问的设置,就连接上了,不需要再输入目标机器的访问密码 3. 允许用户对不同的目标设备有不同的访问权限 ...

  2. 新电脑重新安装win10+python3.6+anaconda+tensorflow1.12(gpu版)

    安装了一天的软件,遇到了很多坑,在快泪崩的时候,始终以磨刀不误砍柴工鼓励自己,坚持安好了,话不多说,上干货: 前言:        TensorFlow 有两个版本:CPU 版本和 GPU 版本.GP ...

  3. 图片懒加载之lazyload.js插件使用

    简介 lazyload.js用于长页面图片的延迟加载,视口外的图片会在窗口滚动到它的位置时再进行加载,这是与预加载相反的. 使用 lazyload依赖与jquery.所以先引入jquery和lazyl ...

  4. input 输入框 propertychange

    做搜索功能的时候,经常遇到输入框检查的需求,最常见的是即时搜索,今天好好小结一下. 即时搜索的方案: (1)change事件    触发事件必须满足两个条件: a)当前对象属性改变,并且是由键盘或鼠标 ...

  5. MySQL5.7之多源复制&Nginx中间件(上)【转】

    有生之年系列----MySQL5.7之多源复制&Nginx中间件(上)-wangwenan6-ITPUB博客http://blog.itpub.net/29510932/viewspace-1 ...

  6. RobotFramework安装扩展库包Selenium2Library(三)

    Robot Framework扩展库包 http://robotframework.org/#libraries 一,自动化测试web端 1,pip安装SeleniumLibrary pip inst ...

  7. python网络编程--线程GIL(全局解释器锁)

    一:什么是GIL 在CPython,全局解释器锁,或GIL,是一个互斥体防止多个本地线程执行同时修改同一个代码.这把锁是必要的主要是因为当前的内存管理不是线程安全的.(然而,由于GIL存在,其他特性已 ...

  8. C压缩字符串中的空格

    使用纯C语言,去除一个字符串开头和结尾的空格,内部若有连续空格只保留一个.  C Code  12345678910111213141516171819202122232425262728293031 ...

  9. 20155225 实验二《Java面向对象程序设计》实验报告

    20155225 实验二<Java面向对象程序设计>实验报告 一.单元测试 三种代码 知道了伪代码.产品代码.测试代码的关系和用途,并根据老师的例子,按测试代码调试了产品代码. 值得注意的 ...

  10. 阿里云宝塔Linux服务器管理面版初始化地址不能登入(原创)

    宝塔面板是一款可以让Linux服务器实现图形可视化操作的集成系统. 安装好以后,页面初始化登录地址http://{您的服务器IP}:888不能登入. 不能登入通常是我们没有权限访问,需要更改安全组赋予 ...