题目背景

刚立完Flag我就挂了WC和THUWC。。。

时间限制0.5s,空间限制128MB

因为Claris大佬帮助一周目由乃通过了Deus的题,所以一周目的由乃前往二周目世界找雪辉去了

由于二周目世界被破坏殆尽,所以由乃和雪辉天天都忙着重建世界(其实和MC差不多吧),Deus看到了题问她,总是被告知无可奉告

Deus没办法只能去三周目世界问三周目的由乃OI题。。。

三周目的世界中,因为没有未来日记,所以一切都很正常,由乃天天认真学习。。。

因为Deus天天问由乃OI题,所以由乃去学习了一下OI

由于由乃智商挺高,所以OI学的特别熟练

她在RBOI2016中以第一名的成绩进入省队,参加了NOI2016获得了金牌保送

Deus:这个题怎么做呀?

yuno:这个不是NOI2014的水题吗。。。

Deus:那如果出到树上,多组链询问,带修改呢?

yuno:诶。。。???

Deus:这题叫做睡觉困难综合征哟~

虽然由乃OI很好,但是她基本上不会DS,线段树都只会口胡,比如她NOI2016的分数就是100+100+100+0+100+100。。。NOIP2017的分数是100+0+100+100+0+100

所以她还是只能找你帮她做了。。。

题目描述

由乃这个问题越想越迷糊,已经达到了废寝忘食的地步。结果她发现……晚上睡不着了!只能把自己的一个神经元(我们可以抽象成一个树形结构)拿出来,交给Deus。

这个神经元是一个有n个点的树,每个点的包括一个位运算opt和一个权值x,位运算有&,l,^三种,分别用1,2,3表示。

为了治疗失眠,Deus可以将一些神经递质放在点x上,初始的刺激值是v_0v0​ 。然后v依次经过从x到y的所有节点,每经过一个点i,v就变成v opti xi,所以他想问你,最后到y时,希望得到的刺激值尽可能大,所以最大值的v可以是多少呢?当然由于初始的神经递质的量有限,所以给定的初始值v_0v0​ 必须是在[0,z]之间。Deus每次都会给你3个数,x,y,z。

不过,Deus为了提升治疗效果,可能会对一些神经节点进行微调。在这种情况下,也会给三个数x,y,z,意思是把x点的操作修改为y,数值改为z

输入输出格式

输入格式:

第一行三个数n,m,k。k的意义是每个点上的数,以及询问中的数值z都 <2^k<2k 。之后n行,每行两个数x,y表示该点的位运算编号以及数值

之后n - 1行,每行两个数x,y表示x和y之间有边相连

之后m行,每行四个数,Q,x,y,z表示这次操作为Q(1位询问,2为更改),x,y,z意义如题所述

输出格式:

对于每个操作1,输出到最后可以造成的最大刺激度v

输入输出样例

输入样例#1:

5 5 3
1 7
2 6
3 7
3 6
3 1
1 2
2 3
3 4
1 5
1 1 4 7
1 1 3 5
2 1 1 3
2 3 3 3
1 1 3 2

输出样例#1:

7
1
5

输入样例#2:

2 2 2
2 2
2 2
1 2
2 2 2 2
1 2 2 2

输出样例#2:

3

说明

对于30%的数据,n,m <= 1

对于另外20%的数据,k <= 5

对于另外20%的数据,位运算只会出现一种

对于100%的数据,0 <= n , m <= 100000 , k <= 64

题解

题目是起床困难综合症的升级版(症 or 征?)

采取同样的贪心策略,如果知道全0或全1跑完一遍运算后的结果,就可以知道最后答案

问题就在于怎么维护这个全0或全1跑完一遍的结果

这东西要动态修改,又是树状的,那就LCT吧(树剖)

首先看一下直接维护我们要的东西可不可以,所以对于一个节点,维护 \(r0\) ,\(r1\) 分别代表全0跑过这个节点包含的一段运算的结果,以及全1跑完这一段运算的结果

pushup怎么写?

\(x_{r0}=(\thicksim lc(x)_{r0}\&rc(x)_{r0})|(lc(x)_{r0}\&rc(x)_{r1})\)

\(x_{r1}=(\thicksim lc(x)_{r1}\&rc(x)_{r0})|(lc(x)_{r1}\&rc(x)_{r1})\)

(当然还要加上自己的权值,但是由于加上自己的有点麻烦,所以只写了左右的,大概就是这个意思,心领神会就行,加上自己权值的可见代码)

什么意思?

以第一个式子为例子,\(x_{r0}\) 是以全0开始的,那么左边的一段肯定是以全0开始的,所以两个都是 \(lc(x)_{r0}\),然后分情况

跑完左边一段后,有的位置上是0,而有的位置上是1

那么是0的位置,最后的结果,肯定是用0跑完右边一段的运算,所以只有跑完左边一段后值为0的位置才可以留下右边用全0跑完的结果

而是1的位置,就只能留下右边用全1跑完的结果

第二个式子类似

又因为题目的位运算是有序的,那么reverse的时候就行不通了,所以每个节点都还要维护一个反向运算的结果,reverse的时候正向的和反向的swap一下就好了

然后这个东西,每次询问就只要拉链一下,贪心就可以了


#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=100000+10;
int n,m,k;
struct data{
ull r0,r1;
inline data operator + (const data &A) const {
data B;
B.r0=(~r0&A.r0)|(r0&A.r1);
B.r1=(~r1&A.r0)|(r1&A.r1);
return B;
};
};
#define lc(x) ch[(x)][0]
#define rc(x) ch[(x)][1]
struct LCT{
int ch[MAXN][2],fa[MAXN],rev[MAXN],stack[MAXN],cnt;
data f[MAXN],fR[MAXN],val[MAXN];
inline bool nroot(int x)
{
return lc(fa[x])==x||rc(fa[x])==x;
}
inline void reverse(int x)
{
std::swap(lc(x),rc(x));
std::swap(f[x],fR[x]);
rev[x]^=1;
}
inline void pushup(int x)
{
f[x]=fR[x]=val[x];
if(lc(x))f[x]=f[lc(x)]+f[x],fR[x]=fR[x]+fR[lc(x)];
if(rc(x))f[x]=f[x]+f[rc(x)],fR[x]=fR[rc(x)]+fR[x];
}
inline void pushdown(int x)
{
if(rev[x])
{
if(lc(x))reverse(lc(x));
if(rc(x))reverse(rc(x));
rev[x]=0;
}
}
inline void rotate(int x)
{
int f=fa[x],p=fa[f],c=(rc(f)==x);
if(nroot(f))ch[p][rc(p)==f]=x;
fa[ch[f][c]=ch[x][c^1]]=f;
fa[ch[x][c^1]=f]=x;
fa[x]=p;
pushup(f);
pushup(x);
}
inline void splay(int x)
{
cnt=0;
stack[++cnt]=x;
for(register int i=x;nroot(i);i=fa[i])stack[++cnt]=fa[i];
while(cnt)pushdown(stack[cnt--]);
for(register int y=fa[x];nroot(x);rotate(x),y=fa[x])
if(nroot(y))rotate((lc(y)==x)==(lc(fa[y])==y)?y:x);
pushup(x);
}
inline void access(int x)
{
for(register int y=0;x;x=fa[y=x])splay(x),rc(x)=y,pushup(x);
}
inline void makeroot(int x)
{
access(x);splay(x);reverse(x);
}
inline void split(int x,int y)
{
makeroot(x);access(y);splay(y);
}
inline void link(int x,int y)
{
makeroot(x);fa[x]=y;
}
};
LCT T;
#undef lc
#undef rc
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char c='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(c!='\0')putchar(c);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
int main()
{
read(n);read(m);read(k);
for(register int i=1;i<=n;++i)
{
int opt;
ull x;
read(opt);read(x);
if(opt==1)T.val[i].r0=0,T.val[i].r1=x;
if(opt==2)T.val[i].r0=x,T.val[i].r1=~0;
if(opt==3)T.val[i].r0=x,T.val[i].r1=~x;
}
for(register int i=1;i<n;++i)
{
int u,v;
read(u);read(v);
T.link(u,v);
}
while(m--)
{
ull Q,x,y,z;
read(Q);read(x);read(y);read(z);
if(Q==1)
{
T.split(x,y);
ull res=0,res0=T.f[y].r0,res1=T.f[y].r1,e=1;
for(register int i=63;i>=0;--i)
if(res0&(e<<i))res|=(e<<i);
else if((res1&(e<<i))&&(e<<i)<=z)res|=(e<<i),z-=(e<<i);
write(res,'\n');
}
if(Q==2)
{
T.access(x);T.splay(x);
if(y==1)T.val[x].r0=0,T.val[x].r1=z;
if(y==2)T.val[x].r0=z,T.val[x].r1=~0;
if(y==3)T.val[x].r0=z,T.val[x].r1=~z;
T.pushup(x);
}
}
return 0;
}

【刷题】洛谷 P3613 睡觉困难综合征的更多相关文章

  1. 洛谷P3613 睡觉困难综合征(LCT)

    题目: P3613 睡觉困难综合症 解题思路: LCT,主要是维护链上的多位贪心答案,推个公式:分类讨论入0/1的情况,合并就好了(公式是合并用的) 代码(我不知道之前那个为啥一直wa,改成结构体就好 ...

  2. 洛谷P3613 睡觉困难综合征(LCT,贪心)

    洛谷题目传送门 膜拜神犇出题人管理员!!膜拜yler和ZSY!! 没错yler连续教我这个蒟蒻写起床困难综合症和睡觉困难综合症%%%Orz,所以按位贪心的思路可以继承下来 这里最好还是写树剖吧,不过我 ...

  3. [洛谷]P3613 睡觉困难综合征

    题目大意:给出一棵n个点的树,每个点有一个运算符(与.或.异或)和一个数,支持两种操作,第一种修改一个点的运算符和数,第二种给出x,y,z,询问若有一个0~z之间的数从点x走到点y(简单路径),并且对 ...

  4. 洛谷P3613 睡觉困难综合征

    传送门 题解 人生第一道由乃…… 做这题之前应该先去把这一题给切掉->这里 我的题解->这里 然后先膜一波zsy大佬和flashhu大佬 大体思路就是先吧全0和全1的都跑答案,然后按位贪心 ...

  5. [洛谷P3613]睡觉困难综合症

    写码30min,调码3h的题.. 好在最后查出来了 , , n, x, y, z); 改成了 , , n, mark[x], y, z); 然后$40\rightarrow 100$ #include ...

  6. 洛谷3613睡觉困难综合征(LCT维护链信息(前后缀)+贪心)

    这个题目还是很好啊QWQ很有纪念意义 首先,如果在序列上且是单次询问的话,就是一个非常裸的贪心了QWQ这也是NOI当时原题的问题和数据范围 我们考虑上树的话,应该怎么做? 我的想法是,对于每一位建一个 ...

  7. [bzoj3668][Noi2014]起床困难综合症/[洛谷3613]睡觉困难综合症

    来自FallDream的博客,未经允许,请勿转载,谢谢. 21 世纪,许多人得了一种奇怪的病:起床困难综合症,其临床表现为:起床难,起床后精神不佳.作为一名青春阳光好少年,atm 一直坚持与起床困难综 ...

  8. P3613 睡觉困难综合征(LCT + 位运算)

    题意 NOI2014 起床困难综合症 放在树上,加上单点修改与链上查询. 题解 类似于原题,我们只需要求出 \(0\) 和 \(2^{k - 1} - 1\) 走过这条链会变成什么值,就能确定每一位为 ...

  9. [P3613]睡觉困难综合征

    Description: 给定一个n个点的树,每个点有一个操作符号 "&" "|" "^" ,以及一个权值 要求支持以下操作: 1. ...

随机推荐

  1. 【Unity Shader】(十) ------ UV动画原理及简易实现

    笔者使用的是 Unity 2018.2.0f2 + VS2017,建议读者使用与 Unity 2018 相近的版本,避免一些因为版本不一致而出现的问题. [Unity Shader](三) ----- ...

  2. EventBus的基本使用步骤

    为什么要使用EventBus 当我们进行项目开发的时候,往往是需要应用程序的各组件间进行通信,比如在子线程中进行请求数据,当数据请求完毕后通过Handler或者是广播通知UI, 通常两个Activit ...

  3. Hacknet 玩后感

    这款游戏的主题是黑客模拟.玩家需要帮助雇主搞定各种乱七八糟的需求. 你需要使用各种工具和各种linux命令行来获取对方电脑的Root权限.然后就是各种增删改查... 解密部分设计的太过简单,导致玩的时 ...

  4. prometheus-operator 监控 Rabbitmq集群

    首先我们监控服务需要知道prometheus-operator是如何去工作的,才好去写相关的yaml配置,这里我划分成了5个部分,如果容器服务本身就以k8s来编排的,那就只需要三步,这里因为我的rab ...

  5. java.lang.ClassNotFoundException: com.fasterxml.jackson.databind.ObjectMapper

    RabbitMq配置时常见错误 java.lang.ClassNotFoundException: com.fasterxml.jackson.databind.ObjectMapper <de ...

  6. 使用python实现用微信远程控制电脑

    首先,我们要先看看微信远程控制电脑的原理是什么呢? 我们可以利用Python的标准库控制本机电脑,然后要实现远程的话,我们可以把电子邮件作为远程控制的渠道,我们用Python自动登录邮箱检测邮件,当我 ...

  7. redis高级应用(集群搭建、集群分区原理、集群操作)

    文章主目录 Redis集群简介 Redis集群搭建 Redis集群分区原理 集群操作 参考文档 本文是redis学习系列的第四篇,前面我们学习了redis的数据结构和一些高级特性,点击下面链接可回看 ...

  8. API验证

    API验证说明 API验证: a. 发令牌: 静态 PS: 隐患 key被别人获取 b. 动态令牌 PS: (问题越严重)用户生成的每个令牌被黑客获取到,都会破解 c. 高级版本 PS: 黑客网速快, ...

  9. “Hello World!“”团队第七周召开的第二次会议

    今天是我们团队“Hello World!”团队第七周召开的第二次会议.博客内容: 一.会议时间 二.会议地点 三.会议成员 四.会议内容 五.todo list 六.会议照片 七.燃尽图 八.代码 一 ...

  10. Daily Scrum (2015/10/30)

    据组员们反映其他组都会有休息时间,所以我和PM讨论把每周5晚上作为日常休息时间,这一天组员们自由阅读.