CF960G Bandit Blues 【第一类斯特林数 + 分治NTT】
题目链接
题解
同FJOI2016只不过数据范围变大了
考虑如何预处理第一类斯特林数
性质
\]
分治\(NTT\)即可在\(O(nlog^2n)\)的时间内预处理出同一个\(n\)的所有\(\begin{bmatrix} n \\ i \end{bmatrix}\)
其实还有比较优美的倍增\(fft\)的\(O(nlogn)\)的方法
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<cmath>
#include<map>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define cls(s,v) memset(s,v,sizeof(s))
#define mp(a,b) make_pair<int,int>(a,b)
#define cp pair<int,int>
using namespace std;
const int maxn = 400005,maxm = 100005,INF = 0x3f3f3f3f;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = 0; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 1) + (out << 3) + c - 48; c = getchar();}
return flag ? out : -out;
}
const int P = 998244353,G = 3;
inline int qpow(int a,int b){
int re = 1;
for (; b; b >>= 1,a = 1ll * a * a % P)
if (b & 1) re = 1ll * re * a % P;
return re;
}
int R[maxn];
void NTT(int* a,int n,int f){
for (int i = 0; i < n; i++) if (i < R[i]) swap(a[i],a[R[i]]);
for (int i = 1; i < n; i <<= 1){
int gn = qpow(G,(P - 1) / (i << 1));
for (int j = 0; j < n; j += (i << 1)){
int g = 1,x,y;
for (int k = 0; k < i; k++,g = 1ll * g * gn % P){
x = a[j + k],y = 1ll * a[j + k + i] * g % P;
a[j + k] = (x + y) % P,a[j + k + i] = (P - y + x) % P;
}
}
}
if (f == 1) return;
int nv = qpow(n,P - 2); reverse(a + 1,a + n);
for (int i = 0; i < n; i++) a[i] = 1ll * a[i] * nv % P;
}
int n,a,b,A[20][maxn],deg[20],cnt;
void solve(int l,int r){
if (l == r){
cnt++; A[cnt][0] = l; A[cnt][1] = 1; deg[cnt] = 1;
return;
}
int mid = l + r >> 1;
solve(l,mid); solve(mid + 1,r);
int a = cnt - 1,b = cnt,n = 1,L = 0;
while (n <= deg[a] + deg[b]) n <<= 1,L++;
for (int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
for (int i = deg[a] + 1; i < n; i++) A[a][i] = 0;
for (int i = deg[b] + 1; i < n; i++) A[b][i] = 0;
NTT(A[a],n,1); NTT(A[b],n,1);
for (int i = 0; i < n; i++) A[a][i] = 1ll * A[a][i] * A[b][i] % P;
NTT(A[a],n,-1);
cnt--;
deg[a] += deg[b];
}
int C(int n,int m){
if (n < m) return 0;
int re = 1;
for (int i = 1; i <= m; i++)
re = 1ll * re * (n - i + 1) % P * qpow(i,P - 2) % P;
return re;
}
int S[100][100];
int main(){
n = read(); a = read(); b = read();
if (a + b - 2 > n - 1 || !a || !b){puts("0"); return 0;}
if (n == 1) A[1][0] = 1;
else solve(0,n - 2);
printf("%I64d\n",1ll * A[1][a + b - 2] * C(a + b - 2,a - 1) % P);
return 0;
}
CF960G Bandit Blues 【第一类斯特林数 + 分治NTT】的更多相关文章
- CF960G Bandit Blues 第一类斯特林数、NTT、分治/倍增
传送门 弱化版:FJOI2016 建筑师 由上面一题得到我们需要求的是\(\begin{bmatrix} N - 1 \\ A + B - 2 \end{bmatrix} \times \binom ...
- [CF960G]Bandit Blues(第一类斯特林数+分治卷积)
Solution: 先考虑前缀,设 \(f(i, j)\) 为长度为 \(i\) 的排列中满足前缀最大值为自己的数有 \(j\) 个的排列数. 假设新加一个数 \(i+1\) 那么会有: \[ f ...
- CF960G Bandit Blues 第一类斯特林数+分治+FFT
题目传送门 https://codeforces.com/contest/960/problem/G 题解 首先整个排列的最大值一定是 \(A\) 个前缀最大值的最后一个,也是 \(B\) 个后缀最大 ...
- CF960G-Bandit Blues【第一类斯特林数,分治,NTT】
正题 题目链接:https://www.luogu.com.cn/problem/CF960G 题目大意 求有多少个长度为\(n\)的排列,使得有\(A\)个前缀最大值和\(B\)个后缀最大值. \( ...
- Codeforces960G Bandit Blues 【斯特林数】【FFT】
题目大意: 求满足比之前的任何数小的有A个,比之后的任何数小的有B个的长度为n的排列个数. 题目分析: 首先写出递推式,设s(n,k)表示长度为n的排列,比之前的数小的数有k个. 我们假设新加入的数为 ...
- CF960G Bandit Blues 分治+NTT(第一类斯特林数)
$ \color{#0066ff}{ 题目描述 }$ 给你三个正整数 \(n\),\(a\),\(b\),定义 \(A\) 为一个排列中是前缀最大值的数的个数,定义 \(B\) 为一个排列中是后缀最大 ...
- 【CF960G】Bandit Blues(第一类斯特林数,FFT)
[CF960G]Bandit Blues(第一类斯特林数,FFT) 题面 洛谷 CF 求前缀最大值有\(a\)个,后缀最大值有\(b\)个的长度为\(n\)的排列个数. 题解 完完全全就是[FJOI] ...
- CF960G Bandit Blues(第一类斯特林数)
传送门 可以去看看litble巨巨关于第一类斯特林数的总结 设\(f(i,j)\)为\(i\)个数的排列中有\(j\)个数是前缀最大数的方案数,枚举最小的数的位置,则有递推式\(f(i,j)=f(i- ...
- 【cf960G】G. Bandit Blues(第一类斯特林数)
传送门 题意: 现在有一个人分别从\(1,n\)两点出发,包中有一个物品价值一开始为\(0\),每遇到一个价值比包中物品高的就交换两个物品. 现在已知这个人从左边出发交换了\(a\)次,从右边出发交换 ...
随机推荐
- 我的第一个上线小程序,案例实战篇二——LayaAir游戏开始界面开发
不知不觉我的第一个小程序已经上线一周了,uv也稳定的上升着. 很多人说我的小程序没啥用,我默默一笑,心里说:“它一直敦促我学习,敦促我进步”.我的以一个小程序初衷是经验分享,目前先把经验分享到博客园, ...
- JS对象,获取key和value
var peopleArray=[] var peopleobj={jiangyx: "姜艳霞", yeluosen: "叶落森"} for(let i in ...
- JAVA之运算符优先级
Java运算符优先级从高到低 运算符 结合性 [ ] . ( ) (方法调用) 从左向右 ! ~ ++ -- +(一元运算) -(一元运算) 从右向左 * / % 从左向右 + - 从左向右 < ...
- 使用json.dumps转换django queryset的datatime报错问题解决
转换成json时使用的方法如下: json.dumps(list(models.userlist.objects.values("vu"))) 报错信息如下: Traceback ...
- 第26次Scrum会议(11/14)【欢迎来怼】
一.小组信息 队名:欢迎来怼小组成员队长:田继平成员:李圆圆,葛美义,王伟东,姜珊,邵朔,阚博文 小组照片 二.开会信息 时间:2017/11/14 11:35~11:57,总计22min.地点:东北 ...
- 北航MOOC系统Android客户端NABC
北航MOOC手机客户端NABC分析 1) N (Need 需求) MOOC是Massive Open Online Course的缩写,通常被译为大型开放式网络课程,它最早在08年的时候由一位加拿大的 ...
- Scrum Meeting 6 -2014.11.12
今天apec最后一天,大部分任务都差不多了,局部测试问题不大.大家修复下小细节就可以开始整合了. Member Today’s task Next task 林豪森 协助测试及服务器部署 协助测试及服 ...
- OO第三次阶段总结
(1)调研,规格化设计的大致发展和为什么得到人类重视 结构化程序设计(英语:Structured programming),一种编程范型.它采用子程序(函数就是一种子程序).代码区块.for循环以及w ...
- 20172321『Java程序设计』课程 结对编程练习_四则运算第二周阶段总结
20172321『Java程序设计』课程 结对编程练习_四则运算第二周阶段总结 结对伙伴 学号 :20172324 姓名 :曾程 伙伴第一周博客地址: 对结对伙伴的评价:一个很优秀的同学,在这次项目中 ...
- 新手学ajax2
今天主要解决了一个困扰两天的ajax问题,就是关于从服务器获取数据时的同步和异步问题 , xhr.open("GET", url,false): 这里有三个参数“GET”表示获取的 ...