【POJ2411】Mondriaan's Dream(轮廓线DP)

题面

Vjudge

题解

这题我会大力状压!!!

时间复杂度大概是\(O(2^{2n}n^2)\),设\(f[i][S]\)表示当前第\(i\)行向下伸展出去的状态为\(S\)

那么每次枚举一下当前行的放法,进行转移就好了。

然后就长成了这个样子(不要在意我强行缩减代码长度)

尽管这不是我们本题的重点,然而我还是放份代码

#include<cstdio>
#include<cstring>
int n,m;long long f[12][1<<11];
int main()
{
while(scanf("%d%d",&n,&m))
{
if(n==0)break;memset(f,0,sizeof(f));f[0][0]=1;
for(int i=1;i<=n;++i)
for(int j=0;j<(1<<m);++j)
for(int k=0;k<(1<<m);++k)
{
if(j&k)continue;
int t=j|k;bool fl=true;
for(int l=0;l<m;++l)
if(!(t&(1<<l)))
{
if(t&(1<<(l+1))){fl=false;break;}
if(l==m-1){fl=false;break;}
t|=1<<l;t|=1<<(l+1);
}
if(fl)f[i][k]+=f[i-1][j];
}
printf("%lld\n",f[n][0]);
}
}

标题里都写了是轮廓线\(dp\),那么我们就来轮廓线一下?

我们从上往下,从左往右依次放东西。假设当前填到了位置\((i,j)\)

那么对于当前以及接下来的状态有影响的只有\((i,1..j-1)\)和\((i-1,j..m)\)

一共\(m\)个位置,那么我们把这些位置按照从上往下从左往右的顺序压缩。

考虑如何转移:

1.作为一个竖着放的矩形的下半部分,那么需要\((i-1,j)\)未被覆盖。

2.作为一个横着放的矩形的右半部分,那么需要\((i,j-1)\)未被覆盖。

3.啥都不干,等着后面的格子来覆盖当前位置。

当然,每一项转移都要限制,比如如果当前位置的正上方的位置是空的,那么必须竖着覆盖。

接下来就是大力的转移咯。

#include<cstdio>
#include<cstring>
int n,m;long long f[122][1<<11];
int main()
{
while(scanf("%d%d",&n,&m)&&n)
{
memset(f,0,sizeof(f));f[0][(1<<m)-1]=1;
for(int i=1;i<=n;++i)
for(int j=1,nw=i*m-m+j;j<=m;++j,++nw)
for(int k=0;k<(1<<m);++k)
if(f[nw-1][k])
{
if(i>1&&!(k&1))
f[nw][(k>>1)|(1<<(m-1))]+=f[nw-1][k];
if(j>1&&!(k&(1<<(m-1)))&&(k&1))
f[nw][(k>>1)|(1<<(m-1))|(1<<(m-2))]+=f[nw-1][k];
if(((k&1)||i==1))
f[nw][k>>1]+=f[nw-1][k];
}
printf("%lld\n",f[n*m][(1<<m)-1]);
}
}

【POJ2411】Mondriaan's Dream(轮廓线DP)的更多相关文章

  1. POJ2411 Mondriaan's Dream 轮廓线dp

    第一道轮廓线dp,因为不会轮廓线dp我们在南京区域赛的时候没有拿到银,可见知识点的欠缺是我薄弱的环节. 题目就是要你用1*2的多米诺骨排填充一个大小n*m(n,m<=11)的棋盘,问填满它有多少 ...

  2. Mondriaan's Dream 轮廓线DP 状压

    Mondriaan's Dream 题目链接 Problem Description Squares and rectangles fascinated the famous Dutch painte ...

  3. poj 2411 Mondriaan's Dream 轮廓线dp

    题目链接: http://poj.org/problem?id=2411 题目意思: 给一个n*m的矩形区域,将1*2和2*1的小矩形填满方格,问一共有多少种填法. 解题思路: 用轮廓线可以过. 对每 ...

  4. poj2411 Mondriaan's Dream (轮廓线dp、状压dp)

    Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17203   Accepted: 991 ...

  5. $POJ2411\ Mondriaan's\ Dream$ 状压+轮廓线$dp$

    传送门 Sol 首先状压大概是很容易想到的 一般的做法大概就是枚举每种状态然后判断转移 但是这里其实可以轮廓线dp 也就是从上到下,从左到右地放方块 假设我们现在已经放到了$(i,j)$这个位置 那么 ...

  6. POJ2411 Mondriaan's Dream 题解 轮廓线DP

    题目链接:http://poj.org/problem?id=2411 题目大意 给你一个 \(n \times m (1 \le n,m \le 11)\) 的矩阵,你需要用若干 \(1 \time ...

  7. poj2411 Mondriaan's Dream【状压DP】

    Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20822   Accepted: 117 ...

  8. [Poj2411]Mondriaan's Dream(状压dp)(插头dp)

    Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 18096   Accepted: 103 ...

  9. poj2411 Mondriaan's Dream[简单状压dp]

    $11*11$格子板上铺$1*2$地砖方案.以前做过?权当复习算了,毕竟以前学都是浅尝辄止的..常规题,注意两个条件:上一行铺竖着的则这一行同一位一定要铺上竖的,这一行单独铺横的要求枚举集合中出现连续 ...

  10. POJ1185 炮兵阵地 和 POJ2411 Mondriaan's Dream

    炮兵阵地 Language:Default 炮兵阵地 Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 34008 Accepted ...

随机推荐

  1. python代码异常范围检查方法(非常实用)

    对于python编程的代码,如果需要进行相应的检查其中的错误或者异常,并且确定出现异常语句的大致范围,主要有以下四种方法: 1.第一种方法:遇错即止(告知原因) try  ......(所需检查语句) ...

  2. 前端基础css

    CSS主要学习的是选择器和样式属性. 导入css的方式:行内样式,内部样式,外部样式(推荐使用) 行内样式:在标记的style属性中设定CSS样式 <p style="color: g ...

  3. kubernetes高可用设计-CA,etcd

    环境准备: master01:192.168.150.128 master02:192.168.150.130 master03:192.168.150.131 node01:192.168.150. ...

  4. php从入门到放弃系列-04.php页面间值传递和保持

    php从入门到放弃系列-04.php页面间值传递和保持 一.目录结构 二.两次页面间传递值 在两次页面之间传递少量数据,可以使用get提交,也可以使用post提交,二者的区别恕不赘述. 1.get提交 ...

  5. RHEL7 利用双网卡绑定实现VLAN

    使用nmcli创建bond配置 #nmcli connection add type bond ifname bond0 con-name bond0 mode active-backup #nmcl ...

  6. JavaScript学习(1)之JavaScript基础

    JavaScript学习(1)之JavaScript基础 由于工作原因,开发语言逐渐以JavaScript为主,所以,抽空学习了下JavaScript语法.等现阶段的工作稳定之后,陆续会分享下自己在学 ...

  7. jenkins设置定时任务

    每次都手动的构建项目显然不够方便,有时候需要定时地执行自动化测试脚本.例如,每天晚上定时执行 pjenkins.py 文件来运行自动化测试项目. 设置定时任务 前面已经创建的 “python test ...

  8. 字幕字体滚动插件——scroxt.js

    README scroxt.js Overview scroxt.js是一个字体滚动的插件库,包括视频弹幕滚动,直播弹幕.直播弹幕强制模式.单行水平左右滚动.文本垂直滚动上下,用于简单快捷生成滚动字体 ...

  9. Git基础级介绍

    这篇随笔是在学习了廖雪峰老师的git教程之后写的总结,要看详细的基础级git介绍可以去http://www.liaoxuefeng.com/wiki/0013739516305929606dd1836 ...

  10. 结对项目:四则运算web

    1)Coding.Net项目地址 https://git.coding.net/DandelionClaw/WEB_Calculator.git 注:本项目为web端,并且需要连接SQL Server ...