题面

题解

知识引入 - \(SG\)函数

任何一个公平组合游戏都可以通过把每个局面看成一个顶点,对每个局面和它的子局面连一条有向边来抽象成这个“有向图游戏”。下面我们就在有向无环图的顶点上定义Sprague-Grundy函数。

定义\(mex\)运算,表示最小的不属于这个集合的非负整数

如:\(mex(\{0,1,2,4\})=3,mex(\{1,3,5\})=0,mex(\{\})=0\)。

对于一个给定的有向无环图,定义关于图的每个顶点的Sprague-Grundy函数\(g\)如下:

\[g(x)=mex(\{g(y)\mid y \in \mathrm{suc}_x\})
\]

由\(g(x)\)的性质可以得出:\(g(x) = 0 \Leftrightarrow x \in\)必败态

如果一个游戏可以分成多个子游戏,那么整个游戏的\(SG\)值就是每个子游戏的\(SG\)值的异或和。

本题题解

部分分可以暴力求\(g(x)\)。

枚举分成的堆数。如果将\(x\)分成了\(i\)堆,那么这\(i\)堆中有\(x \% i\)堆\(\left\lceil\frac{x}{i}\right\rceil\),有\(i - x \% i\)堆\(\left\lfloor\frac{x}{i}\right\rfloor\)。

对于每一个\(i\),算出它的\(SG\)值,为所有分出来的\(SG\)值的异或和的\(mex\)

然后\(SG\)函数可以记忆化。

接下来继续推性质,因为\(x \oplus x = 0\),所以只需要根据奇偶性讨论一下就可以了,这时候大约有\(70\)分。

然后\(\left\lfloor\frac{x}{i}\right\rfloor\)可以数论分块,于是数论分块即可。

代码

#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#define RG register inline int read()
{
int data = 0, w = 1; char ch = getchar();
while(ch != '-' && (!isdigit(ch))) ch = getchar();
if(ch == '-') w = -1, ch = getchar();
while(isdigit(ch)) data = data * 10 + (ch ^ 48), ch = getchar();
return data * w;
} const int maxn(100010);
int sg[maxn], vis[maxn], T, F; int SG(int x)
{
if(x < F) return 0;
if(~sg[x]) return sg[x];
for(RG int l = 2, r; l <= x; l = r + 1)
{
r = (x / (x / l));
for(RG int j = l; j <= std::min(l + 1, r); j++)
{
int a = x % j, b = x / j, c = j - x % j, s = 0;
if(a & 1) s ^= SG(b + 1);
if(c & 1) s ^= SG(b);
vis[s] = x;
}
} for(RG int i = 0; ; i++) if(vis[i] != x) return sg[x] = i;
} int main()
{
memset(sg, -1, sizeof sg);
T = read(), F = read();
while(T--)
{
int n = read(), ans = 0;
for(RG int i = 1; i <= n; i++) ans ^= SG(read());
printf("%d ", (bool)ans);
}
return 0;
}

【HNOI2014】江南乐的更多相关文章

  1. bzoj 3576[Hnoi2014]江南乐 sg函数+分块预处理

    3576: [Hnoi2014]江南乐 Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 1929  Solved: 686[Submit][Status ...

  2. 洛谷 P3235 [HNOI2014]江南乐 解题报告

    P3235 [HNOI2014]江南乐 Description 两人进行 T 轮游戏,给定参数 F ,每轮给出 N 堆石子,先手和后手轮流选择石子数大于等于 F 的一堆,将其分成任意(大于1)堆,使得 ...

  3. bzoj3576: [Hnoi2014]江南乐

    Description 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏.    游戏的规则是这样的,首先给定一 ...

  4. [HNOI2014]江南乐

    Description 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏.    游戏的规则是这样的,首先给定一 ...

  5. 洛谷P3235 [HNOI2014]江南乐(Multi-SG)

    题目描述 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏. 游戏的规则是这样的,首先给定一个数F,然后游戏系统 ...

  6. luogu P3235 [HNOI2014]江南乐

    传送门 这题又是我什么时候做的(挠头) 首先是个和SG函数有关的博弈论,SG=0则先手必败.显然一堆石子就是一个游戏,而若干堆石子的SG值就是每堆SG的异或和,所以算出每堆石子SG就能知道答案 然后怎 ...

  7. 【BZOJ】3576: [Hnoi2014]江南乐

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3576 很显然,这是一个multi-nim游戏. 注意:1.一个点的SG值就是一个不等于它的 ...

  8. 【bzoj3576】 Hnoi2014—江南乐

    http://www.lydsy.com/JudgeOnline/problem.php?id=3576 (题目链接) 题意 给出一个数$F$,然后$n$堆石子,每次操作可以把一堆不少于$F$的石子分 ...

  9. luoguP3235 [HNOI2014]江南乐 数论分块 + 博弈论

    感觉其实很水? 题目就是一个Multi SG游戏,只需要预处理出所有的\(sg\)值即可\(O(Tn)\)计算 对于计算\(sg[n]\)而言,显然我们可以枚举划分了\(x\)堆来查看后继状态 那么, ...

  10. 【LG3235】 [HNOI2014]江南乐

    题目描述 给出\(n\)堆石子, 每次可以选择将大于某个数\(f\)一堆平均分成多个堆, 最后不能操作的失败. 题解 10pts 直接爆搜即可. 70pts 像我们对这类题目的常规操作那样,将一整个局 ...

随机推荐

  1. Oracle 客户端库时引发 BadImageFormatException

    程序提示错误: 试加载 Oracle 客户端库时引发 BadImageFormatException.如果在安装 32 位 Oracle 客户端组件的情况下以 64 位模式运行,将出现此问题. 出现场 ...

  2. KHFlatButton

    KHFlatButton https://github.com/kylehorn/KHFlatButton 效果: 对于自己做demo来说,每次设置button就不用这么折腾了,几句话就行了,非常爽: ...

  3. Hadoop HBase概念学习系列之HBase里的列式数据库(十七)

    列式数据库,从数据存储方式上有别于行式数据库,所有数据按列存取. 行式数据库在做一些列分析时,必须将所有列的信息全部读取出来 而列式数据库由于其是按列存取,因此只需在特定列做I/O即可完成查询与分析, ...

  4. thinkphp导出csv文件,用表格输出excel

    1.thinkphp导出csv文件 导出csv文件可能就那几行代码,今天有个问题困扰我好久,就是导出之后出现一些html代码,这个不应该,view里面是空的,controller中最后也没有$this ...

  5. python3: 字符串和文本

    1. 分割字符串-使用多个界定符[re.split()] >>> line = 'asdf fjdk; afed, fjek,asdf, foo' >>> impo ...

  6. JavaScript验证字符串只能包含数字或者英文字符的代码实例

    验证字符串只能包含数字或者英文字符的代码实例:本章节分享一段代码实例,它实现了验证字符串内容是否只包含英文字符或者数字.代码实例如下: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...

  7. Golang 临时对象池 sync.Pool

    Go 1.3 的sync包中加入一个新特性:Pool.官方文档可以看这里http://golang.org/pkg/sync/#Pool 这个类设计的目的是用来保存和复用临时对象,以减少内存分配,降低 ...

  8. 1087. [SCOI2005]互不侵犯King【状压DP】

    Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上 左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行, ...

  9. 如何用代码而非事件触发PBO

    通常我们通过抛出事件触发PBO,但若没有事件发生时,我们其实也可以用代码强制发出命令. 写法如下: CL_GUI_CFW=>SET_NEW_OK_CODE( NEW_CODE = <uco ...

  10. android scheme打开天猫,淘宝

    直接上代码 Intent intent = new Intent(); intent.setAction("android.intent.action.VIEW"); /* Str ...