【BZOJ1041】[HAOI2008]圆上的整点

题面

bzoj

洛谷

题解

不妨设\(x>0,y>0\)

\[x^2+y^2=r^2\\
y^2=(x+r)(x-r)
\]

设\(r-x=ud,r+x=vd,(u,v)=1\)

\[y^2=d^2uv
\]

\(u,v\)一定为完全平方数

则\(u=s^2,v=t^2\)且必有\((s,t)=1\)

\[2r=(u+v)d=(s^2+t^2)d\\
\Rightarrow\\
x=\frac{t^2-s^2}{2}d\\
y=dst\
\]

然后枚举\(2r\)的约数即可

代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
using namespace std;
typedef long long ll;
ll R, ans;
int main () {
cin >> R;
for (ll i = 1; i * i <= 2 * R; i++) {
if (2 * R % i == 0) {
ll d = i;
for (ll s = 1; s * s <= 2 * R / d; s++) {
ll t = sqrt(2 * R / d - s * s);
if (s * s + t * t == 2 * R / d && __gcd(s, t) == 1) {
ll x = (t * t - s * s) / 2 * d, y = d * s * t;
if (x > 0 && y > 0 && x * x + y * y == R * R) ans += 2;
}
}
if (i * i != R) {
d = 2 * R / i;
for (ll s = 1; s * s <= 2 * R / d; s++) {
ll t = sqrt(2 * R / d - s * s);
if (s * s + t * t == 2 * R / d && __gcd(s, t) == 1) {
ll x = (t * t - s * s) / 2 * d, y = d * s * t;
if (x > 0 && y > 0 && x * x + y * y == R * R) ans += 2;
}
}
}
}
}
printf("%lld\n", (ans + 1) * 4);
return 0;
}

【BZOJ1041】[HAOI2008]圆上的整点的更多相关文章

  1. bzoj千题计划127:bzoj1041: [HAOI2008]圆上的整点

    http://www.lydsy.com/JudgeOnline/problem.php?id=1041 设 X>0 ,Y>0 X^2 + Y^2 = R^2 X^2 = R^2-Y^2 ...

  2. BZOJ1041 [HAOI2008]圆上的整点 【数学】

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 4631  Solved: 2087 [Submit][S ...

  3. [BZOJ1041] [HAOI2008] 圆上的整点 (数学)

    Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Samp ...

  4. BZOJ1041:[HAOI2008]圆上的整点(数论)

    Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Samp ...

  5. BZOJ1041 HAOI2008圆上的整点(数论)

    求x2+y2=r2的整数解个数,显然要化化式子.考虑求正整数解. y2=r2-x2→y2=(r-x)(r+x)→(r-x)(r+x)为完全平方数→(r-x)(r+x)/d2为完全平方数,d=gcd(r ...

  6. [bzoj1041][HAOI2008]圆上的整点

    我能想得出怎么做才奇怪好吗 题解:http://blog.csdn.net/csyzcyj/article/details/10044629 #include<iostream> #inc ...

  7. BZOJ 1041: [HAOI2008]圆上的整点

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3621  Solved: 1605[Submit][Sta ...

  8. bzoj 1041: [HAOI2008]圆上的整点 数学

    1041: [HAOI2008]圆上的整点 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...

  9. bzoj 1041: [HAOI2008]圆上的整点 本原勾股數組

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2027  Solved: 853[Submit][Stat ...

随机推荐

  1. Vue2学习笔记:v-model指令

    1.v-model指令 <!DOCTYPE html> <html> <head> <title></title> <script s ...

  2. iOS设计模式 - 中介者

    iOS设计模式 - 中介者 原理图 说明 用一个中介对象来封装一系列的对象交互.中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互. 注:中介者对象本身没有复用价值 ...

  3. UNIX日期与时间

    日期和时间 UINX系统内部有一个变量记录自开机以来经过的时间.从用户的角度,UNIX时间函数分为3类: 度量进程已使用CPU时间的函数: 给出绝对时间或日历时间的函数: 设置闹钟.定时器以及睡眠的函 ...

  4. SpringBoot整合Redis初实践

    Redis是一个开源(BSD许可),内存存储的数据结构服务器,可用作数据库,高速缓存和消息队列代理. 有时,为了提升整个网站的性能,在开发时会将经常访问的数据进行缓存,这样在调用这个数据接口时,可以提 ...

  5. September 30th 2017 Week 39th Saturday

    The simplest answer is often the correct one. 最简单的答案通常是最正确的答案. Simplest is always best. Sometimes yo ...

  6. September 20th 2017 Week 38th Wednesday

    All our dreams can come true if we have the courage to pursue them. 如果我们有勇气去追求梦想,我们的梦想一定可以成为现实. If y ...

  7. Spfa(最短路求解)

    spfa(最短路求解) 模板: #include<iostream> #include<cstdio> #include<queue> #include<cs ...

  8. 【转载】uWSGI配置翻译

    英文原版: http://uwsgi-docs.readthedocs.io/en/latest/Options.html 转载地址: http://www.cnblogs.com/zhouej/ar ...

  9. 查看oracle数据库版本

    1. 登录sysdba用户 sqlplus / as sysdba 2. 方法一:v$version SQL> select * from v$version; 3.  方法二:product_ ...

  10. wk_10.md

    Python检测和处理异常 try-except语句 try-except语句定义了进行异常监控的一段代码,并且提供了异常处理的机制,下面是使用的语法: try: # 可能抛出异常的语句,会一直执行, ...