【BZOJ1041】[HAOI2008]圆上的整点
【BZOJ1041】[HAOI2008]圆上的整点
题面
题解
不妨设\(x>0,y>0\)
y^2=(x+r)(x-r)
\]
设\(r-x=ud,r+x=vd,(u,v)=1\)
\]
\(u,v\)一定为完全平方数
则\(u=s^2,v=t^2\)且必有\((s,t)=1\)
\Rightarrow\\
x=\frac{t^2-s^2}{2}d\\
y=dst\
\]
然后枚举\(2r\)的约数即可
代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
using namespace std;
typedef long long ll;
ll R, ans;
int main () {
cin >> R;
for (ll i = 1; i * i <= 2 * R; i++) {
if (2 * R % i == 0) {
ll d = i;
for (ll s = 1; s * s <= 2 * R / d; s++) {
ll t = sqrt(2 * R / d - s * s);
if (s * s + t * t == 2 * R / d && __gcd(s, t) == 1) {
ll x = (t * t - s * s) / 2 * d, y = d * s * t;
if (x > 0 && y > 0 && x * x + y * y == R * R) ans += 2;
}
}
if (i * i != R) {
d = 2 * R / i;
for (ll s = 1; s * s <= 2 * R / d; s++) {
ll t = sqrt(2 * R / d - s * s);
if (s * s + t * t == 2 * R / d && __gcd(s, t) == 1) {
ll x = (t * t - s * s) / 2 * d, y = d * s * t;
if (x > 0 && y > 0 && x * x + y * y == R * R) ans += 2;
}
}
}
}
}
printf("%lld\n", (ans + 1) * 4);
return 0;
}
【BZOJ1041】[HAOI2008]圆上的整点的更多相关文章
- bzoj千题计划127:bzoj1041: [HAOI2008]圆上的整点
http://www.lydsy.com/JudgeOnline/problem.php?id=1041 设 X>0 ,Y>0 X^2 + Y^2 = R^2 X^2 = R^2-Y^2 ...
- BZOJ1041 [HAOI2008]圆上的整点 【数学】
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MB Submit: 4631 Solved: 2087 [Submit][S ...
- [BZOJ1041] [HAOI2008] 圆上的整点 (数学)
Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Samp ...
- BZOJ1041:[HAOI2008]圆上的整点(数论)
Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Samp ...
- BZOJ1041 HAOI2008圆上的整点(数论)
求x2+y2=r2的整数解个数,显然要化化式子.考虑求正整数解. y2=r2-x2→y2=(r-x)(r+x)→(r-x)(r+x)为完全平方数→(r-x)(r+x)/d2为完全平方数,d=gcd(r ...
- [bzoj1041][HAOI2008]圆上的整点
我能想得出怎么做才奇怪好吗 题解:http://blog.csdn.net/csyzcyj/article/details/10044629 #include<iostream> #inc ...
- BZOJ 1041: [HAOI2008]圆上的整点
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3621 Solved: 1605[Submit][Sta ...
- bzoj 1041: [HAOI2008]圆上的整点 数学
1041: [HAOI2008]圆上的整点 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...
- bzoj 1041: [HAOI2008]圆上的整点 本原勾股數組
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2027 Solved: 853[Submit][Stat ...
随机推荐
- Vue2学习笔记:v-model指令
1.v-model指令 <!DOCTYPE html> <html> <head> <title></title> <script s ...
- iOS设计模式 - 中介者
iOS设计模式 - 中介者 原理图 说明 用一个中介对象来封装一系列的对象交互.中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互. 注:中介者对象本身没有复用价值 ...
- UNIX日期与时间
日期和时间 UINX系统内部有一个变量记录自开机以来经过的时间.从用户的角度,UNIX时间函数分为3类: 度量进程已使用CPU时间的函数: 给出绝对时间或日历时间的函数: 设置闹钟.定时器以及睡眠的函 ...
- SpringBoot整合Redis初实践
Redis是一个开源(BSD许可),内存存储的数据结构服务器,可用作数据库,高速缓存和消息队列代理. 有时,为了提升整个网站的性能,在开发时会将经常访问的数据进行缓存,这样在调用这个数据接口时,可以提 ...
- September 30th 2017 Week 39th Saturday
The simplest answer is often the correct one. 最简单的答案通常是最正确的答案. Simplest is always best. Sometimes yo ...
- September 20th 2017 Week 38th Wednesday
All our dreams can come true if we have the courage to pursue them. 如果我们有勇气去追求梦想,我们的梦想一定可以成为现实. If y ...
- Spfa(最短路求解)
spfa(最短路求解) 模板: #include<iostream> #include<cstdio> #include<queue> #include<cs ...
- 【转载】uWSGI配置翻译
英文原版: http://uwsgi-docs.readthedocs.io/en/latest/Options.html 转载地址: http://www.cnblogs.com/zhouej/ar ...
- 查看oracle数据库版本
1. 登录sysdba用户 sqlplus / as sysdba 2. 方法一:v$version SQL> select * from v$version; 3. 方法二:product_ ...
- wk_10.md
Python检测和处理异常 try-except语句 try-except语句定义了进行异常监控的一段代码,并且提供了异常处理的机制,下面是使用的语法: try: # 可能抛出异常的语句,会一直执行, ...