【bzoj4712】洪水 树链剖分+线段树维护树形动态dp
题目描述
输入
输入文件第一行包含一个数n,表示树的大小。
输出
对于每次询问操作,输出对应的答案,答案之间用换行隔开。
样例输入
4
4 3 2 1
1 2
1 3
4 2
4
Q 1
Q 2
C 4 10
Q 1
样例输出
3
1
4
题解
树链剖分+线段树维护树形动态dp
关于动态dp可以参考陈俊锟的PPT。
如果dp是静态的,设 $f[i]$ 表示以 $i$ 为根的子树满足条件的最小代价,那么有:$f[i]=\text{min}(v[i],\sum\limits_{i\to j}f[j])$ 。
当这个dp在序列上进行时,我们比较容易使用线段树维护序列动态dp。
当这个dp在树上进行时,考虑将这棵树轻重链剖分,转化为序列问题。
设 $y$ 为 $x$ 的重儿子,所有 $x$ 的轻儿子的 $f$ 值之和为 $g[x]$ ,那么有:$f[x]=\text{min}(v[x],f[y]+g[x])$ 。
这个形式类似于最小连续子段和中的最小前缀和。使用线段树维护最小前缀和(在重链这一段区间的某位置选出一个点使得总代价 $前面的g+当前的v$ 最小)及总和(这段区间都不选,所有的 $g$ 之和)。线段树的叶子节点有:最小前缀和为 $v$ ,总和为 $g$ 。
当修改时,首先影响到的时修改节点所在的重链,我们把对应节点的 $v$ 修改;然后会影响链顶的 $f$ 值,影响轻链的转移,再不断把链顶的父亲节点的 $g$ 修改。
当查询时,直接查询所求点所在重链上,该点到链底在线段树上的最小前缀和即为答案。
时间复杂度:修改时为 $O(\log^2n)$ ,查询时为 $O(\log n)$ 。
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 200010
#define lson l , mid , x << 1
#define rson mid + 1 , r , x << 1 | 1
using namespace std;
typedef long long ll;
struct data
{
ll sum , ls;
data() {}
data(ll g , ll v) {sum = g , ls = v;}
inline data operator+(const data &a)const
{
return data(sum + a.sum , min(sum + a.ls , ls));
}
}a[N << 2] , w[N];
int head[N] , to[N << 1] , next[N << 1] , cnt , fa[N] , si[N] , bl[N] , end[N] , pos[N] , tot , n;
ll v[N] , f[N] , g[N];
char str[5];
inline void add(int x , int y)
{
to[++cnt] = y , next[cnt] = head[x] , head[x] = cnt;
}
void dfs1(int x)
{
int i;
si[x] = 1;
for(i = head[x] ; i ; i = next[i])
if(to[i] != fa[x])
fa[to[i]] = x , dfs1(to[i]) , si[x] += si[to[i]];
}
void dfs2(int x , int c)
{
int i , k = 0;
bl[x] = c , pos[x] = ++tot , end[x] = x , f[x] = v[x];
for(i = head[x] ; i ; i = next[i])
if(to[i] != fa[x] && si[to[i]] > si[k])
k = to[i];
if(k)
{
dfs2(k , c) , end[x] = end[k];
for(i = head[x] ; i ; i = next[i])
if(to[i] != fa[x] && to[i] != k)
dfs2(to[i] , to[i]) , g[x] += f[to[i]];
f[x] = min(f[x] , f[k] + g[x]);
}
w[pos[x]] = data(g[x] , v[x]);
}
inline void pushup(int x)
{
a[x] = a[x << 1] + a[x << 1 | 1];
}
void build(int l , int r , int x)
{
if(l == r)
{
a[x] = w[l];
return;
}
int mid = (l + r) >> 1;
build(lson) , build(rson);
pushup(x);
}
void updatev(int p , ll v , int l , int r , int x)
{
if(l == r)
{
a[x].ls += v;
return;
}
int mid = (l + r) >> 1;
if(p <= mid) updatev(p , v , lson);
else updatev(p , v , rson);
pushup(x);
}
void updateg(int p , ll g , int l , int r , int x)
{
if(l == r)
{
a[x].sum += g;
return;
}
int mid = (l + r) >> 1;
if(p <= mid) updateg(p , g , lson);
else updateg(p , g , rson);
pushup(x);
}
data query(int b , int e , int l , int r , int x)
{
if(b <= l && r <= e) return a[x];
int mid = (l + r) >> 1;
if(e <= mid) return query(b , e , lson);
else if(b > mid) return query(b , e , rson);
else return query(b , e , lson) + query(b , e , rson);
}
inline void modify(int x , ll v)
{
int y = x;
ll t;
while(x)
{
t = query(pos[bl[x]] , pos[end[x]] , 1 , n , 1).ls;
if(x == y) updatev(pos[x] , v , 1 , n , 1);
else updateg(pos[x] , v , 1 , n , 1);
v = query(pos[bl[x]] , pos[end[x]] , 1 , n , 1).ls - t , x = fa[bl[x]];
}
}
int main()
{
int m , i , x , y;
ll z;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ ) scanf("%lld" , &v[i]);
for(i = 1 ; i < n ; i ++ ) scanf("%d%d" , &x , &y) , add(x , y) , add(y , x);
dfs1(1) , dfs2(1 , 1);
build(1 , n , 1);
scanf("%d" , &m);
while(m -- )
{
scanf("%s%d" , str , &x);
if(str[0] == 'C') scanf("%lld" , &z) , modify(x , z);
else printf("%lld\n" , query(pos[x] , pos[end[x]] , 1 , n , 1).ls);
}
return 0;
}
【bzoj4712】洪水 树链剖分+线段树维护树形动态dp的更多相关文章
- 【bzoj5210】最大连通子块和 树链剖分+线段树+可删除堆维护树形动态dp
题目描述 给出一棵n个点.以1为根的有根树,点有点权.要求支持如下两种操作: M x y:将点x的点权改为y: Q x:求以x为根的子树的最大连通子块和. 其中,一棵子树的最大连通子块和指的是:该子树 ...
- POJ.2763 Housewife Wind ( 边权树链剖分 线段树维护区间和 )
POJ.2763 Housewife Wind ( 边权树链剖分 线段树维护区间和 ) 题意分析 给出n个点,m个询问,和当前位置pos. 先给出n-1条边,u->v以及边权w. 然后有m个询问 ...
- BZOJ.1036 [ZJOI2008]树的统计Count ( 点权树链剖分 线段树维护和与最值)
BZOJ.1036 [ZJOI2008]树的统计Count (树链剖分 线段树维护和与最值) 题意分析 (题目图片来自于 这里) 第一道树链剖分的题目,谈一下自己的理解. 树链剖分能解决的问题是,题目 ...
- BZOJ 3672[NOI2014]购票(树链剖分+线段树维护凸包+斜率优化) + BZOJ 2402 陶陶的难题II (树链剖分+线段树维护凸包+分数规划+斜率优化)
前言 刚开始看着两道题感觉头皮发麻,后来看看题解,发现挺好理解,只是代码有点长. BZOJ 3672[NOI2014]购票 中文题面,题意略: BZOJ 3672[NOI2014]购票 设f(i)f( ...
- 【BZOJ-2325】道馆之战 树链剖分 + 线段树
2325: [ZJOI2011]道馆之战 Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 1153 Solved: 421[Submit][Statu ...
- HDU4897 (树链剖分+线段树)
Problem Little Devil I (HDU4897) 题目大意 给定一棵树,每条边的颜色为黑或白,起始时均为白. 支持3种操作: 操作1:将a->b的路径中的所有边的颜色翻转. 操作 ...
- B20J_2243_[SDOI2011]染色_树链剖分+线段树
B20J_2243_[SDOI2011]染色_树链剖分+线段树 一下午净调这题了,争取晚上多做几道. 题意: 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成 ...
- 2019西北工业大学程序设计创新实践基地春季选拔赛 I Chino with Rewrite (并查集+树链剖分+线段树)
链接:https://ac.nowcoder.com/acm/contest/553/I 思路:离线整棵树,用并查集维护下联通的情况,因为值只有60个,用2的x(1<=x<=60)次方表示 ...
- bzoj 4196 [Noi2015]软件包管理器 (树链剖分+线段树)
4196: [Noi2015]软件包管理器 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 2852 Solved: 1668[Submit][Sta ...
随机推荐
- UWP 五星评价(不跳转到龟速商店)
之前写过一篇文章 UWP 五星好评 代码如下 var pfn = Package.Current.Id.FamilyName; await Launcher.LaunchUriAsync(new ...
- Linux shell(3)
shell的运算操作: let整数运算 expr整数运算 bc浮点运算 字符串运算 let命令: let命令让BASH shell 执行算数值的操作,使用let,可以比较两个值或执行加减乘除等这样的算 ...
- Python中的异常(Exception)处理
异常 当你的程序出现例外情况时就会发生异常(Exception).例如,当你想要读取一个文件时,而那个文件却不存在,怎么办?又或者你在程序执行时不小心把它删除了,怎么办?这些通过使用异常来进行处理. ...
- Linux命令的那些事(三)
回顾linux命令那些事,前面大致总结了常用的Linux命令 回顾Linux命令那些事(一) clear/mkdir/rmdir/ls/rm/pwd/cd/touch/tree/man/--help ...
- centos7 --ngnix 常用命令:
配置命令 随服务器启动 # systemctl enable nginx.service 重启 nginx 服务 # systemctl restart nginx.service 停止 nginx ...
- Linux重定向与管道
程序执行时默认会打开3个流,标准输入.标准输出.标准错误. Redirection The shell interprets the symbols <,>, and >> a ...
- Hyperledger Fabric MSP Identity Validity Rules——MSP身份验证规则
MSP Identity Validity Rules——MSP身份验证规则 正如Hyperledger Fabric Membership Service Providers (MSP)——成员服务 ...
- 04-matplotlib-柱形图
import numpy as np import matplotlib.pyplot as plt # 柱形图 # 例一 N =5 y = [15,28,10,30,25] index = np.a ...
- Binary Tree的3种非Recursive遍历
Binary Tree Preorder Traversal Given a binary tree, return the preorder traversal of its nodes' valu ...
- YQCB冲刺第二周第二天
今天的任务依然为实现查看消费明细的功能. 遇到的问题为从数据库中分类读取,实现图标的显示. 站立会议为: 任务面板为: