设f[i]为在i放置守卫塔时1~i的最小花费。那么显然f[i]=min(f[j]+(i-j)*(i-j-1)/2)+a[i]。

  显然这是个斜率优化入门题。将不与i、j同时相关的提出,得f[i]=min(f[j]+j*(j+1)/2-ij)+i*(i-1)/2+a[i]。

  套路地,假设j>k且j转移优于k,则f[j]+j*(j+1)/2-ij<f[k]+k*(k+1)/2-ik,(f[j]+j*(j+1)/2-f[k]-k*(k+1)/2)/(j-k)<i。

  维护下凸壳即可。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 1000010
#define ll long long
int n,a[N],q[N];
ll f[N];
long double calc(int j,int k)
{
return (long double)(f[j]+(1ll*j*(j+)>>)-f[k]-(1ll*k*(k+)>>))/(j-k);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3156.in","r",stdin);
freopen("bzoj3156.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
for (int i=;i<=n;i++) a[i]=read();
f[]=;
int head=,tail=;q[]=;
for (int i=;i<=n;i++)
{
while (head<tail&&calc(q[head],q[head+])<i) head++;
f[i]=f[q[head]]+(1ll*q[head]*(q[head]+)>>)-1ll*i*q[head]+(1ll*i*(i-)>>)+a[i];
while (head<tail&&calc(q[tail-],q[tail])>calc(q[tail],i)) tail--;
q[++tail]=i;
}
cout<<f[n];
return ;
}

BZOJ3156 防御准备(动态规划+斜率优化)的更多相关文章

  1. BZOJ3156 防御准备 动态规划 斜率优化

    原文链接http://www.cnblogs.com/zhouzhendong/p/8688187.html 题目传送门 - BZOJ3156 题意 长为$n$的序列$A$划分,设某一段为$[i,j] ...

  2. [BZOJ3156]防御准备(斜率优化DP)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3156 分析: 简单的斜率优化DP

  3. 2018.09.29 bzoj3156: 防御准备(斜率优化dp)

    传送门 斜率dp经典题目. 然而算斜率的时候并没有注意到下标的平方会爆int于是咕咕*2. 这道题我用了两个数组来表示状态. f[i]f[i]f[i]表示最后i个位置倒数第i个放木偶的最优值. g[i ...

  4. BZOJ3156: 防御准备 【斜率优化dp】

    3156: 防御准备 Time Limit: 10 Sec  Memory Limit: 512 MB Submit: 2207  Solved: 933 [Submit][Status][Discu ...

  5. bzoj3156 防御准备(斜率优化)

    Time Limit: 10 Sec  Memory Limit: 512 MB Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Out ...

  6. 【学习笔记】动态规划—斜率优化DP(超详细)

    [学习笔记]动态规划-斜率优化DP(超详细) [前言] 第一次写这么长的文章. 写完后感觉对斜优的理解又加深了一些. 斜优通常与决策单调性同时出现.可以说决策单调性是斜率优化的前提. 斜率优化 \(D ...

  7. 【BZOJ-3156】防御准备 DP + 斜率优化

    3156: 防御准备 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 951  Solved: 446[Submit][Status][Discuss] ...

  8. [bzoj1911][Apio2010特别行动队] (动态规划+斜率优化)

    Description Input Output Sample Input - - Sample Output HINT Solution 斜率优化动态规划 首先易得出这样的一个朴素状态转移方程 f[ ...

  9. [bzoj1597][usaco2008 mar]土地购买 (动态规划+斜率优化)

    Description 农夫John准备扩大他的农场,他正在考虑N (1 <= N <= 50,000) 块长方形的土地. 每块土地的长宽满足(1 <= 宽 <= 1,000, ...

随机推荐

  1. [leetcode]从中序与后序/前序遍历序列构造二叉树

    从中序与后序遍历序列构造二叉树 根据一棵树的中序遍历与后序遍历构造二叉树. 注意: 你可以假设树中没有重复的元素. 例如,给出 中序遍历 inorder = [9,3,15,20,7] 后序遍历 po ...

  2. JavaScript学习笔记(七)—— 再说函数

    第八章 函数 1 函数声明和函数表达式 差别一:函数声明:函数在执行代码前被创建:函数表达式是在运行阶段执行代码时创建: 差别二:函数声明创建一个与函数同名的变量,并让她指向函数:使用函数表达式,不给 ...

  3. 1分钟入门接口自动化框架Karate

    介绍 在这篇文章中,我们将介绍一下开源的Web-API自动化测试框架——Karate Karate是基于另一个BDD测试框架Cucumber来建立的,并且共用了一些相同的思想.其中之一就是使用Gher ...

  4. 离线人脸识别 ArcFaceSharp -- ArcFace 2.0 SDK C#封装库分享

    ArcFaceSharp ArcFaceSharp 是ArcSoft 虹软 ArcFace 2.0 SDK 的一个 C# 封装库,为方便进行 C# 开发而封装.欢迎 Start & Fork. ...

  5. AI入门课程资源

    企业 kaggle https://www.kaggle.com/learn/overview Google   介绍 https://developers.google.cn/machine-lea ...

  6. python实现简单线性回归

    之前推导了一元线性回归和多元线性回归,今天就用python来实现一下一元线性回归 先看下之前推导的结果   ,  第一种是用循环迭代的计算方法.这里的x,y是numpy中的array类型 def su ...

  7. Maven打包jar类库

    项目目录>mvn clean compile 编译命令,会在你的项目路径下生成一个target目录,在该目录中包含一个classes文件夹,里面全是生成的class文件及字节码文件. 项目目录& ...

  8. lscpi命令详解

    基础命令学习目录 lspci是一个用来查看系统中所有PCI总线以及连接到该总线上的设备的工具. 命令格式为 lspci -参数 (不加参数显示所有硬件设备) 至于有哪些参数及其详细用法可以看下这篇博客 ...

  9. Django_事务

    介绍 函数说明 from django.db import transaction transaction.atomic # 原子性操作,把一系列操作当做一个整体,错了则集体回退 transactio ...

  10. 用java进行简单的万年历编写

    import java.util.Scanner; public class PrintCalendarDemo1 { public static void main(String[] args) { ...