组合数并不陌生(´・ω・`)

我们都学过组合数

会求组合数吗

一般我们用杨辉三角性质

杨辉三角上的每一个数字都等于它的左上方和右上方的和(除了边界)

第n行,第m个就是,就是C(n, m) (从0开始)

电脑上我们就开一个数组保存,像这样

用递推求

 #include<cstdio>
const int N = + ;
const int MOD = (int)1e9 + ;
int comb[N][N];//comb[n][m]就是C(n,m)
void init(){
for(int i = ; i < N; i ++){
comb[i][] = comb[i][i] = ;
for(int j = ; j < i; j ++){
comb[i][j] = comb[i-][j] + comb[i-][j-];
comb[i][j] %= MOD;
}
}
}
int main(){
init();
}

(PS:大部分题目都要求求余,而且大部分都是对1e9+7这个数求余)

这种方法的复杂度是O(n^2),有没有O(n)的做法,当然有(´・ω・`)

因为大部分题都有求余,所以我们大可利用逆元的原理(没求余的题目,其实你也可以把MOD自己开的大一点,这样一样可以用逆元做)

根据这个公式

我们需要求阶乘和逆元阶乘

我们就用1e9+7来求余吧

代码如下:

 #include<cstdio>
const int N = + ;
const int MOD = (int)1e9 + ;
int F[N], Finv[N], inv[N];//F是阶乘,Finv是逆元的阶乘
void init(){
inv[] = ;
for(int i = ; i < N; i ++){
inv[i] = (MOD - MOD / i) * 1ll * inv[MOD % i] % MOD;
}
F[] = Finv[] = ;
for(int i = ; i < N; i ++){
F[i] = F[i-] * 1ll * i % MOD;
Finv[i] = Finv[i-] * 1ll * inv[i] % MOD;
}
}
int comb(int n, int m){//comb(n, m)就是C(n, m)
if(m < || m > n) return ;
return F[n] * 1ll * Finv[n - m] % MOD * Finv[m] % MOD;
}
int main(){
init();
}

组合大法好,要懂得善加利用(。-`ω´-)

ACM数论之旅8---组合数(组合大法好(,,• ₃ •,,) )的更多相关文章

  1. ACM数论之旅10---大组合数-卢卡斯定理(在下卢卡斯,你是我的Master吗?(。-`ω´-) )

    记得前几章的组合数吧 我们学了O(n^2)的做法,加上逆元,我们又会了O(n)的做法 现在来了新问题,如果n和m很大呢, 比如求C(n, m) % p  , n<=1e18,m<=1e18 ...

  2. acm数论之旅--组合数(转载)

    随笔 - 20  文章 - 0  评论 - 73 ACM数论之旅8---组合数(组合大法好(,,• ₃ •,,) )  补充:全错排公式:https://blog.csdn.net/Carey_Lu/ ...

  3. acm数论之旅--中国剩余定理

    ACM数论之旅9---中国剩余定理(CRT)(壮哉我大中华╰(*°▽°*)╯)   中国剩余定理,又名孙子定理o(*≧▽≦)ツ 能求解什么问题呢? 问题: 一堆物品 3个3个分剩2个 5个5个分剩3个 ...

  4. acm数论之旅--欧拉函数的证明

    随笔 - 20  文章 - 0  评论 - 73 ACM数论之旅7---欧拉函数的证明及代码实现(我会证明都是骗人的╮( ̄▽ ̄)╭) https://blog.csdn.net/chen_ze_hua ...

  5. acm数论之旅(转载) -- 逆元

    ACM数论之旅6---数论倒数,又称逆元(我整个人都倒了( ̄﹏ ̄))   数论倒数,又称逆元(因为我说习惯逆元了,下面我都说逆元) 数论中的倒数是有特别的意义滴 你以为a的倒数在数论中还是1/a吗 ( ...

  6. acm数论之旅--数论四大定理

    ACM数论之旅5---数论四大定理(你怕不怕(☆゚∀゚)老实告诉我)   (本篇无证明,想要证明的去找度娘)o(*≧▽≦)ツ ----------数论四大定理--------- 数论四大定理: 1.威 ...

  7. ACM数论之旅17---反演定理 第一回 二项式反演(神说要有光 于是就有了光(´・ω・`))

    终于讲到反演定理了,反演定理这种东西记一下公式就好了,反正我是证明不出来的~(-o ̄▽ ̄)-o 首先,著名的反演公式 我先简单的写一下o( ̄ヘ ̄*o) 比如下面这个公式 f(n) = g(1) + g ...

  8. ACM数论之旅1---素数(万事开头难(>_<))

    前言:好多学ACM的人都在问我数论的知识(其实我本人分不清数学和数论有什么区别,反正以后有关数学的知识我都扔进数论分类里面好了) 于是我就准备写一个长篇集,把我知道的数论知识和ACM模板都发上来(而且 ...

  9. acm数论之旅(转载)--素数

    https://www.cnblogs.com/linyujun/p/5198832.html 前言:好多学ACM的人都在问我数论的知识(其实我本人分不清数学和数论有什么区别,反正以后有关数学的知识我 ...

随机推荐

  1. LeetCode总结

    LeetCode总结 所有代码见我的github.不过一般leetcode上答案也一大堆,最好还是自己动动手,收获比较大. 100 知识点:递归,二叉树 难度Easy,主要是注意对当p和q均为null ...

  2. TensorFlow Python2.7环境下的源码编译(三)编译

    一.源代码编译 这里要为仅支持 CPU 的 TensorFlow 构建一个 pip 软件包,需要调用以下命令: $ bazel build --cxxopt="-D_GLIBCXX_USE_ ...

  3. 通过XML文件实现人物之间的对话

    一.建立一个XML文档,放在项目中Assert/Resources/XML文件下 XML的内容如下: <?xml version="1.0" encoding="u ...

  4. 记一次线上gc调优的过程

           近期公司运营同学经常表示线上我们一个后台管理系统运行特别慢,而且经常出现504超时的情况.对于这种情况我们本能的认为可能是代码有性能问题,可能有死循环或者是数据库调用次数过多导致接口运行 ...

  5. Vue 入门之组件化开发

    Vue 入门之组件化开发 组件其实就是一个拥有样式.动画.js 逻辑.HTML 结构的综合块.前端组件化确实让大的前端团队更高效的开发前端项目.而作为前端比较流行的框架之一,Vue 的组件和也做的非常 ...

  6. js 基础拓展

    1.关于 try catch 的用法 <body> <div>请输出一个 5 到 10 之间的数字:</div> <input id="demo&q ...

  7. DataRow对象的RowState和DataRowVersion属性特点

    DataRow对象有两个比较重要的属性,分别是行状态(RowState)和行版本(DataRowVersion),通过这两个属性能够有效的管理表中的行.下面简要的介绍一下行状态和行版本的特点和关系. ...

  8. 实验三 敏捷开发和XP实验

    课程:Java程序设计实验   班级:1352             姓名: 于佳心           学号:20135206 成绩:               指导教师:娄嘉鹏         ...

  9. java 框架 面试

    Java—SSH(MVC)1. 谈谈你mvc的理解MVC是Model—View—Controler的简称.即模型—视图—控制器.MVC是一种设计模式,它强制性的把应用程序的输入.处理和输出分开.MVC ...

  10. validating & update ctabfolder css

    总是查错 结果把validating全部都反选,然后老是update ctabfolder css update ctabfolder css has encountered a problem An ...