组合数并不陌生(´・ω・`)

我们都学过组合数

会求组合数吗

一般我们用杨辉三角性质

杨辉三角上的每一个数字都等于它的左上方和右上方的和(除了边界)

第n行,第m个就是,就是C(n, m) (从0开始)

电脑上我们就开一个数组保存,像这样

用递推求

 #include<cstdio>
const int N = + ;
const int MOD = (int)1e9 + ;
int comb[N][N];//comb[n][m]就是C(n,m)
void init(){
for(int i = ; i < N; i ++){
comb[i][] = comb[i][i] = ;
for(int j = ; j < i; j ++){
comb[i][j] = comb[i-][j] + comb[i-][j-];
comb[i][j] %= MOD;
}
}
}
int main(){
init();
}

(PS:大部分题目都要求求余,而且大部分都是对1e9+7这个数求余)

这种方法的复杂度是O(n^2),有没有O(n)的做法,当然有(´・ω・`)

因为大部分题都有求余,所以我们大可利用逆元的原理(没求余的题目,其实你也可以把MOD自己开的大一点,这样一样可以用逆元做)

根据这个公式

我们需要求阶乘和逆元阶乘

我们就用1e9+7来求余吧

代码如下:

 #include<cstdio>
const int N = + ;
const int MOD = (int)1e9 + ;
int F[N], Finv[N], inv[N];//F是阶乘,Finv是逆元的阶乘
void init(){
inv[] = ;
for(int i = ; i < N; i ++){
inv[i] = (MOD - MOD / i) * 1ll * inv[MOD % i] % MOD;
}
F[] = Finv[] = ;
for(int i = ; i < N; i ++){
F[i] = F[i-] * 1ll * i % MOD;
Finv[i] = Finv[i-] * 1ll * inv[i] % MOD;
}
}
int comb(int n, int m){//comb(n, m)就是C(n, m)
if(m < || m > n) return ;
return F[n] * 1ll * Finv[n - m] % MOD * Finv[m] % MOD;
}
int main(){
init();
}

组合大法好,要懂得善加利用(。-`ω´-)

ACM数论之旅8---组合数(组合大法好(,,• ₃ •,,) )的更多相关文章

  1. ACM数论之旅10---大组合数-卢卡斯定理(在下卢卡斯,你是我的Master吗?(。-`ω´-) )

    记得前几章的组合数吧 我们学了O(n^2)的做法,加上逆元,我们又会了O(n)的做法 现在来了新问题,如果n和m很大呢, 比如求C(n, m) % p  , n<=1e18,m<=1e18 ...

  2. acm数论之旅--组合数(转载)

    随笔 - 20  文章 - 0  评论 - 73 ACM数论之旅8---组合数(组合大法好(,,• ₃ •,,) )  补充:全错排公式:https://blog.csdn.net/Carey_Lu/ ...

  3. acm数论之旅--中国剩余定理

    ACM数论之旅9---中国剩余定理(CRT)(壮哉我大中华╰(*°▽°*)╯)   中国剩余定理,又名孙子定理o(*≧▽≦)ツ 能求解什么问题呢? 问题: 一堆物品 3个3个分剩2个 5个5个分剩3个 ...

  4. acm数论之旅--欧拉函数的证明

    随笔 - 20  文章 - 0  评论 - 73 ACM数论之旅7---欧拉函数的证明及代码实现(我会证明都是骗人的╮( ̄▽ ̄)╭) https://blog.csdn.net/chen_ze_hua ...

  5. acm数论之旅(转载) -- 逆元

    ACM数论之旅6---数论倒数,又称逆元(我整个人都倒了( ̄﹏ ̄))   数论倒数,又称逆元(因为我说习惯逆元了,下面我都说逆元) 数论中的倒数是有特别的意义滴 你以为a的倒数在数论中还是1/a吗 ( ...

  6. acm数论之旅--数论四大定理

    ACM数论之旅5---数论四大定理(你怕不怕(☆゚∀゚)老实告诉我)   (本篇无证明,想要证明的去找度娘)o(*≧▽≦)ツ ----------数论四大定理--------- 数论四大定理: 1.威 ...

  7. ACM数论之旅17---反演定理 第一回 二项式反演(神说要有光 于是就有了光(´・ω・`))

    终于讲到反演定理了,反演定理这种东西记一下公式就好了,反正我是证明不出来的~(-o ̄▽ ̄)-o 首先,著名的反演公式 我先简单的写一下o( ̄ヘ ̄*o) 比如下面这个公式 f(n) = g(1) + g ...

  8. ACM数论之旅1---素数(万事开头难(>_<))

    前言:好多学ACM的人都在问我数论的知识(其实我本人分不清数学和数论有什么区别,反正以后有关数学的知识我都扔进数论分类里面好了) 于是我就准备写一个长篇集,把我知道的数论知识和ACM模板都发上来(而且 ...

  9. acm数论之旅(转载)--素数

    https://www.cnblogs.com/linyujun/p/5198832.html 前言:好多学ACM的人都在问我数论的知识(其实我本人分不清数学和数论有什么区别,反正以后有关数学的知识我 ...

随机推荐

  1. Gitlab+Jenkins学习之路(一)之Git基础

    1.GIT基础    GIT是一个分布式版本管理系统,速度快,适合大规模,跨地区多人协同开.SVN是一个集中式版本管理系统. (1)GIT生态 GIT分布式版本管理系统 Gitlab git私库解决方 ...

  2. spring 各个版本的源码、jar包和源码jar包下载地址

    spring各个版本的源码jar包.文档jar包和spring的jar包 http://maven.springframework.org/release/org/springframework/sp ...

  3. systemctl start nginx timeout

    昨儿个研究docker ,搭建私有仓库.想着用nginx代理一下仓库地址.方式使用80端口,于是愉快的下载,编辑,安装nginx.创建nginx.service作为系统启动服务. 结果......,多 ...

  4. pytorch中的Linear Layer(线性层)

    LINEAR LAYERS Linear Examples: >>> m = nn.Linear(20, 30) >>> input = torch.randn(1 ...

  5. 用 Delphi 7 实现基于 FFMS2 的视频转 GIF 工具 [原创]

    儿子经常要把自拍的视频(ts格式)转成表情包,下载了几个工具都不大好用,更多的还要收费.那就想自己写一个吧,没想到这一下断断续续地,居然 3 个月过去了.现在总算弄出个作品来了,结个贴吧.唉,天资愚钝 ...

  6. js传输txt文档内容

    要求:实现修改text文档内容,即可将text修改内容传到页面显示: HTML: <!doctype html> <html lang="en"> < ...

  7. ajax 异步刷新

    第一种方法,ajax实现:当然,ajax使用起来确实很简单就可以实现,但是里面的很多知识还是比较有点深的.我之前做页面时间自动刷新的功能就是用的ajax.完整代码是:1.getTime.php: 复制 ...

  8. The serializable class XXX does not declare a static final serialVersionUID field of type long的警告

    原文: http://blog.csdn.net/ultrakang/article/details/41820543

  9. Beta发布文案+美工

    团队名称:探路者 1蔺依铭:http://www.cnblogs.com/linym762/(组长) 2张恩聚:http://www.cnblogs.com/zej87/ 3米赫:http://www ...

  10. Thunder团队--Beta发布用户使用报告

    Thunder爱阅app Beta 发布用户使用报告 用户数量:14人 以下为用户评论:(注:为了保护用户的姓名权,以下用户名以昵称形式给出.) 序号 昵称 个人信息 获得软件途径 使用次数 用户评论 ...