BZOJ5305 HAOI2018苹果树(概率期望+动态规划)
每种父亲编号小于儿子编号的有标号二叉树的出现概率是相同的,问题相当于求所有n个点的此种树的所有结点两两距离之和。
设f[n]为答案,g[n]为所有此种树所有结点的深度之和,h[n]为此种树的个数。
枚举左右子树大小,则有f[n]=Σ{[f[i]+(g[i]+h[i]*i)·(n-i)]·h[n-i-1]+[f[n-i-1]+(g[n-i-1]+h[n-i-1]*(n-i-1))·(i+1)]·h[i]}·C(n-1,i),即对两棵子树分别统计贡献,C(n-1,i)即给左右子树分配编号。g[n]=Σ[(g[i]+h[i]*i)·h[n-i-1]+(g[n-i-1]+h[n-i-1]*(n-i-1))·h[i]]·C(n-1,i),h[n]=Σh[i]·h[n-i-1]·C(n-1,i),比较显然。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 2010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,P,C[N][N],f[N],g[N],h[N];
void inc(int &x,int y){x+=y;if (x>=P) x-=P;}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj5305.in","r",stdin);
freopen("bzoj5305.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),P=read();
C[][]=;
for (int i=;i<=n;i++)
{
C[i][]=C[i][i]=;
for (int j=;j<i;j++)
C[i][j]=(C[i-][j-]+C[i-][j])%P;
}
f[]=g[]=;h[]=;
for (int i=;i<=n;i++)
{
for (int j=;j<i;j++)
inc(h[i],1ll*h[j]*h[i-j-]%P*C[i-][j]%P);
for (int j=;j<i;j++)
inc(g[i],((g[j]+1ll*j*h[j])%P*h[i-j-]+(g[i-j-]+1ll*(i-j-)*h[i-j-])%P*h[j])%P*C[i-][j]%P);
for (int j=;j<i;j++)
inc(f[i],((f[j]+(g[j]+1ll*j*h[j])%P*(i-j))%P*h[i-j-]+(f[i-j-]+(g[i-j-]+1ll*(i-j-)*h[i-j-])%P*(j+))%P*h[j])%P*C[i-][j]%P);
}
cout<<f[n];
return ;
}
BZOJ5305 HAOI2018苹果树(概率期望+动态规划)的更多相关文章
- 【题解】亚瑟王 HNOI 2015 BZOJ 4008 概率 期望 动态规划
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4008 一道不简单的概率和期望dp题 根据期望的线性性质,容易想到,可以算出每张卡的期望伤害, ...
- BZOJ5305: [HAOI2018]苹果树
传送门 果然只有我这种菜鸡才会用这种菜鸡做法QwQ 对于一类要求期望的题目,有一个无脑的做法: 设概率为 \(f\),期望为 \(g\) 每次合并两个二元组 \(<f_1,g_1>,< ...
- [BZOJ5305][HAOI2018]苹果树(DP)
首先注意到每种树都是等概率出现的,于是将问题转化成计数求和问题. f[n]表示所有n个点的树的两两点距离和的总和. g[n]表示所有n个点的树的所有点到根的距离和的总和. h[n]表示n个点的树的可能 ...
- [BZOJ5305][Haoi2018]苹果树 组合数
题目描述 小 C 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 C 发现每一天这棵树都会生长出一个新的结点. 第一天的时候, 果树会长出一个根结点, 以后每一 ...
- [BZOJ5305][HAOI2018]苹果树 组合数学
链接 小 C 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 C 发现每一天这棵树都会生长出一个新的结点. 第一天的时候, 果树会长出一个根结点, 以后每一天, ...
- [BZOJ5305] [HAOI2018] 苹果树 数学 组合计数
Summary 题意很清楚: 小 \(C\) 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 \(C\) 发现每一天这棵树都会生长出一个新的结点. 第一天的时候 ...
- BZOJ5305 [Haoi2018]苹果树 【组合数学】
题目链接 BZOJ5305 题解 妙啊 要求的是所有可能的树形的所有点对距离和 直接考虑点的贡献肯定想不出,这样的所有点对距离问题通常转化为边的贡献 考虑一条边会产生多少贡献 我们枚举\(i\)节点的 ...
- BZOJ4899 记忆的轮廓(概率期望+动态规划+决策单调性)
容易发现跟树没什么关系,可以预处理出每个点若走向分叉点期望走多少步才能回到上个存档点,就变为链上问题了.考虑dp,显然有f[i][j]表示在i~n中设置了j个存档点,其中i设置存档点的最优期望步数.转 ...
- BZOJ4832 抵制克苏恩(概率期望+动态规划)
注意到A+B+C很小,容易想到设f[i][A][B][C]为第i次攻击后有A个血量为1.B个血量为2.C个血量为3的期望伤害,倒推暴力转移即可. #include<iostream> #i ...
随机推荐
- Python里的类和对象简介
---恢复内容开始--- Python里的类 对象=属性+方法: 对象的属性主要是指主要的特征和参量,而方法主要是指函数: 类是一个具有一定特征和方法的集合,而对象是类的一个:类和对象的关系就如同模 ...
- 利用workbench对linux/Ubuntu系统中的mysql数据库进行操作
在上一篇文章中,我分享了在linux中如何安装mysql数据库,但是这只是安装了mysql的服务,并没有图形化管理界面,所以这样子操作起来并没有那么方便,那么现在我们就来实现如何利用在window中安 ...
- iOS分类Category探索
什么是Category? Category是Objective-C 2.0之后添加的语言特性,Category的主要作用是为已经存在的类添加方法,一般称为分类,文件名格式是"NSObject ...
- Scikit-learn数据变换
转载自:https://blog.csdn.net/Dream_angel_Z/article/details/49406573 本文主要是对照scikit-learn的preprocessing章节 ...
- 基于WebSocket协议的性能测试
互联网应用时代,用户获取信息的方式从传统媒体到新媒体,信息时效性对通信技术要求越来越高, HTTP协议已经不能适用.于是WebSocket出现了,它实现浏览器与服务器的全双工通信,服务端主动向客户端发 ...
- 笔试题——C++开发简单记录错误模块
题目:链接:https://www.nowcoder.com/questionTerminal/67df1d7889cf4c529576383c2e647c48 来源:牛客网 解析及代码来源:http ...
- tar.gz 文件解压 (安装 netbean 时会用到)
sudo tar xvf jdk-7u45-linux-i586.tar.gz -C /usr/lib 参考文章 http://hi.baidu.com/xiaomeng008/item/5e787b ...
- WinForm中从SQLite数据库获取数据显示到DataGridView
1.关于Sqlite Sqlite是一款开源的.适合在客户端和嵌入式设备中使用的轻量级数据库,支持标准的SQL. 不像SqlServer或Oracle的引擎是一个独立的进程.通过TCP或命名管道等与程 ...
- python2.7 倒计时
From: http://www.vitostack.com/2016/06/05/python-clock/#more Python公告 Python 发布了一个网站 http://pythoncl ...
- iOS静态库.a总结(2017.1.24增加脚本打包方法)
修改于:2017.1.24 1.什么是库? 库是程序代码的集合,是共享程序代码的一种方式 2.根据源代码的公开情况,库可以分为2种类型 a.开源库 公开源代码,能看到具体实现 ,比如SDWebImag ...