题意:

  给定两个字符串A 和 B, 求长度不小于 k 的公共子串的个数(可以相同)

分两部分求和sa[i-1] > len1  sa[i] < len1  和  sa[i-1] < len1   sa[i] > len1

#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff;
int s[maxn];
int sa[maxn], t[maxn], t2[maxn], c[maxn], n;
int ran[maxn], height[maxn]; void get_sa(int m)
{
int i, *x = t, *y = t2;
for(i = ; i < m; i++) c[i] = ;
for(i = ; i < n; i++) c[x[i] = s[i]]++;
for(i = ; i < m; i++) c[i] += c[i-];
for(i = n-; i >= ; i--) sa[--c[x[i]]] = i;
for(int k = ; k <= n; k <<= )
{
int p = ;
for(i = n-k; i < n; i++) y[p++] = i;
for(i = ; i < n; i++) if(sa[i] >= k) y[p++] = sa[i] - k;
for(i = ; i < m; i++) c[i] = ;
for(i = ; i < n; i++) c[x[y[i]]]++;
for(i = ; i< m; i++) c[i] += c[i-];
for(i = n-; i >= ; i--) sa[--c[x[y[i]]]] = y[i];
swap(x, y);
p = ; x[sa[]] = ;
for(i = ; i < n; i++)
x[sa[i]] = y[sa[i-]] == y[sa[i]] && y[sa[i-]+k] == y[sa[i]+k] ? p- : p++;
if(p >= n) break;
m = p;
}
int k = ;
for(i = ; i < n; i++) ran[sa[i]] = i;
for(i = ; i < n; i++)
{
if(k) k--;
int j = sa[ran[i]-];
while(s[i+k] == s[j+k]) k++;
height[ran[i]] = k;
}
} int k, top, num;
LL sum, ans;
char s1[maxn], s2[maxn];
int stac[maxn], cnt[maxn];
int main()
{
while(~rd(k) && k)
{
top = sum = num = ans = n = ;
rs(s1); rs(s2);
int len1 = strlen(s1);
int len2 = strlen(s2);
rep(i, , len1)
s[n++] = s1[i];
s[n++] = '#';
rep(i, , len2)
s[n++] = s2[i];
s[n++] = ;
get_sa();
rep(i, , n)
{
if(height[i] < k)
{
sum = top = ;
continue;
}
int num = ;
while(top && height[i] < stac[top]) //维持单调递增栈 可能当前sa[i-1] < len1 但height是连续的 所以短板效应替换栈中元素
{ //而它自己如果sa[i-1] < len1 那么下面的 num是不加1的 即自己不算在内
sum -= (LL)(stac[top] - k + ) * cnt[top];
sum += (LL)(height[i] - k + ) * cnt[top];
num += cnt[top];
top--;
}
stac[++top] = height[i];
if(sa[i-] > len1) //扫描B串
{
sum += (LL)(height[i] - k + );
cnt[top] = num + ;
}
else
cnt[top] = num;
if(sa[i] < len1)
ans += sum;
}
rep(i, , n)
{
if(height[i] < k)
{
sum = top = ;
continue;
}
int num = ;
while(top && height[i] < stac[top])
{
sum -= (LL)(stac[top] - k + ) * cnt[top];
sum += (LL)(height[i] - k + ) * cnt[top];
num += cnt[top];
top--;
}
stac[++top] = height[i];
if(sa[i-] < len1) //扫描A串
{
sum += (LL)(height[i] - k + );
cnt[top] = num + ;
}
else
cnt[top] = num;
if(sa[i] > len1)
ans += sum;
}
printf("%lld\n", ans); } return ;
}

Common Substrings POJ - 3415(长度不小于k的公共子串的个数)的更多相关文章

  1. POJ-Common Substrings(后缀数组-长度不小于 k 的公共子串的个数)

    题意: 长度不小于 k 的公共子串的个数 分析: 基本思路是计算 A 的所有后缀和 B 的所有后缀之间的最长公共前缀的长度,把最长公共前缀长度不小于 k 的部分全部加起来. 先将两个字符串连起来,中间 ...

  2. POJ 3415 Common Substrings(长度不小于K的公共子串的个数+后缀数组+height数组分组思想+单调栈)

    http://poj.org/problem?id=3415 题意:求长度不小于K的公共子串的个数. 思路:好题!!!拉丁字母让我Wa了好久!!单调栈又让我理解了好久!!太弱啊!! 最简单的就是暴力枚 ...

  3. POJ 3415 Common Substrings 【长度不小于 K 的公共子串的个数】

    传送门:http://poj.org/problem?id=3415 题意:给定两个串,求长度不小于 k 的公共子串的个数 解题思路: 常用技巧,通过在中间添加特殊标记符连接两个串,把两个串的问题转换 ...

  4. 【POJ 3415】Common Substrings 长度不小于k的公共子串的个数

    长度不小于k的公共子串的个数,论文里有题解,卡了一上午,因为sum没开long long!!! 没开long long毁一生again--- 以后应该早看POJ里的Discuss啊QAQ #inclu ...

  5. POJ - 3415 Common Substrings(后缀数组求长度不小于 k 的公共子串的个数+单调栈优化)

    Description A substring of a string T is defined as: T( i, k)= TiTi+1... Ti+k-1, 1≤ i≤ i+k-1≤| T|. G ...

  6. poj 3415 后缀数组 两个字符串中长度不小于 k 的公共子串的个数

    Common Substrings Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 11469   Accepted: 379 ...

  7. POJ 3415 不小于k的公共子串的个数

    Common Substrings Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 9248   Accepted: 3071 ...

  8. Common Substrings POJ - 3415 (后缀自动机)

    Common Substrings \[ Time Limit: 5000 ms\quad Memory Limit: 65536 kB \] 题意 给出两个字符串,要求两个字符串公共子串长度不小于 ...

  9. 【poj3415-长度不小于k的公共子串个数】后缀数组+单调栈

    这题曾经用sam打过,现在学sa再来做一遍. 基本思路:计算A所有的后缀和B所有后缀之间的最长公共前缀. 分组之后,假设现在是做B的后缀.前面的串能和当前的B后缀产生的公共前缀必定是从前往后单调递增的 ...

随机推荐

  1. 随机游走模型(RandomWalk Mobility)

    随机游走模型由首先由爱因斯坦在1926年以数学方式描述.由于自然界中的许多实体会以不可预知的方式移动,因此随机游走模型用来描述这种不稳定的移动.在这种移动模型中,移动节点随机选择一个方向和速度来从当前 ...

  2. Cause: com.mysql.jdbc.exceptions.jdbc4.CommunicationsException: The last packet successfully received from the server was 78,050,512 milliseconds ago.

    今天访问已经架上服务器的网站,报错: Cause: com.mysql.jdbc.exceptions.jdbc4.CommunicationsException: The last packet s ...

  3. 百道Python入门级练习题(新手友好)第一回合——矩阵乘法

    题目描述 [问题描述] 编写程序,完成3*4矩阵和4*3整数矩阵的乘法,输出结果矩阵. [输入形式] 一行,供24个整数.以先行后列顺序输入第一个矩阵,而后输入第二个矩阵. [输出形式] 先行后列顺序 ...

  4. JavaScript学习笔记(八)—— 补

    第九章 最后的补充 一.Jquery简单阐述 JQuery是一个JavaScript库,旨在减少和简化处理DOM和添加视觉效果的JavaScript代码:使用时必须得添加库路径:学习路径:http:/ ...

  5. django-simple_tag、filter

    simple_tag与filter的用法 1.支持自定义函数处理方法 2.支持模板调用 创建步骤: a.在app目录下创建templatetags文件夹 b.在templatetags中创建任意名称. ...

  6. Babel 入门教程

    Babel是一个广泛使用的转码器,可以将ES6代码转为ES5代码,从而在现有环境执行. 这意味着,你可以现在就用 ES6 编写程序,而不用担心现有环境是否支持.下面是一个例子. // 转码前 inpu ...

  7. React.js - 入门

    React.js - 第1天 1. React简介 React 起源于 Facebook 的内部项目,因为该公司对市场上所有 JavaScript MVC 框架,都不满意,就决定自己写一套,用来架设 ...

  8. Beta发布--PSP DAILY软件功能说明书2.0

    一.开发背景 你在完成了一周的软件工程作业后,需要提交一个PSP图表,里面有4项,如下所示: 1.本周PSP表格,包含每项任务的开始.中断.结束.最终时间,格式如下: 2.本周进度条,包含从开始到现在 ...

  9. apm server

    目录 1.apm的tomcat启动失败解决方法 2.apm的mysql修改root密码的方法 内容: 1.apm的tomcat启动失败解决方法 APMServ5.2.6 无法启动Apache的一个问题 ...

  10. java 事务

    之前的事务介绍基本都是数据库层面的事务,本文来介绍一下J2EE中和事务相关的内容,在阅读本文之前,希望读者对分布式有一定的了解. 关于事务的基础知识这里不再详细介绍,想要了解的同学可以在我的博客中阅读 ...