Redis是一个Key Value数据库。Redis有5种数据类型:字符串、列表、哈希、集合、有序集合。而字符串的底层实现方法之一就是使用sds。以下描述中请读者注意区分sds是指简单动态字符串这一数据结构(用大写表示)还是sdshdr头部中buf数组的起始地址(用小写表示)。

SDS源码

如下源码所示。

根据要保存的字符串长度选用不同的头部大小,从而节省内存,注意sdshdr5与其他不同,下面会有介绍。

SDS由两部分组成:sds、sdshdr。sds是一个char类型的指针,指向buf数组首元素,buf数组是存储字符串的实际位置;sdshdr是SDS的头部,为SDS加上一个头部的好处就是为了提高某些地方的效率,比如获取buf数组中字符串长度,用O(1)的复杂度从头部就能取得。buf数组是一个空数组,从而使得sdshdr是一个可变长度的结构体,用一个空数组的好处就是分配内存时,只用分配一次,而且头部所占用的内存和sds的内存是连续的,释放时也只用释放一次。

sdshdr结构体中各字段的介绍:len : 已存储的字符串长度;alloc : 能存储的字符串的最大容量,不包括SDS头部和结尾的NULL字符;flags : 标志位,低3位代表了sds头部类型,高5位未用;buf[] : 字符数组,存储字符串;注意sdshdr5没有len和alloc字段,其flags的低3位同样代表头部类型,但高5位代表保存的字符串长度。 __attribute__ ((__packed__)) : 使得编译器不会因为内存对齐而在结构体中填充字节,以保证内存的紧凑,这样sds - 1就可以得到flags字段,进而能够得到其头部类型。如果填充了字节,则就不能得到flags字段。

buf数组尾部隐含有一个'\0',SDS是以len字段来判断是否到达字符串末尾,而不是以'\0'判断结尾。所以sds存储的字符串中间可以出现'\0',即sds字符串是二进制安全的。

typedef char *sds;

struct __attribute__ ((__packed__)) sdshdr5 {
unsigned char flags; /* 3 lsb of type, and 5 msb of string length */
char buf[];
};
struct __attribute__ ((__packed__)) sdshdr8 {
uint8_t len; /* used */
uint8_t alloc; /* excluding the header and null terminator */
unsigned char flags; /* 3 lsb of type, 5 unused bits */
char buf[];
};
struct __attribute__ ((__packed__)) sdshdr16 {
uint16_t len; /* used */
uint16_t alloc; /* excluding the header and null terminator */
unsigned char flags; /* 3 lsb of type, 5 unused bits */
char buf[];
};
struct __attribute__ ((__packed__)) sdshdr32 {
uint32_t len; /* used */
uint32_t alloc; /* excluding the header and null terminator */
unsigned char flags; /* 3 lsb of type, 5 unused bits */
char buf[];
};
struct __attribute__ ((__packed__)) sdshdr64 {
uint64_t len; /* used */
uint64_t alloc; /* excluding the header and null terminator */
unsigned char flags; /* 3 lsb of type, 5 unused bits */
char buf[];
};

既然有这么多类型的头部,一定会有类似宏定义之类能够标识头部,的确有,如下所示:

// flags的低三位代表不同类型的sds头部:
#define SDS_TYPE_5 0
#define SDS_TYPE_8 1
#define SDS_TYPE_16 2
#define SDS_TYPE_32 3
#define SDS_TYPE_64 4
#define SDS_TYPE_MASK 7
#define SDS_TYPE_BITS 3

SDS操作

因为sds和头部是内存连续的,所以当我们得到了一个sds,只要将它-1就可得到flags字段,减头部大小即可得到头部起始地址。SDS的很多操作就是利用了这一点,从而带来了极大的方便和快速。下面我们介绍几个SDS比较重要的几个操作

1. 获取头部起始地址

将sds减去头部大小即可。非常方便快速。

// 返回一个指向sds头部的起始地址的指针
#define SDS_HDR_VAR(T,s) struct sdshdr##T *sh = (void*)((s)-(sizeof(struct sdshdr##T)));
// 返回sds头部的起始地址
#define SDS_HDR(T,s) ((struct sdshdr##T *)((s)-(sizeof(struct sdshdr##T))))

2. 获取buf数组中sds存储的字符串长度

先后移1位,得到flags字段,再和掩码相与即可得到头部类型。

static inline size_t sdslen(const sds s) {
unsigned char flags = s[-]; // 内存空间连续,所以往后移1个字节,便是flags字段
switch(flags&SDS_TYPE_MASK) { // 和flags低3位相与,得到sds头部类型
case SDS_TYPE_5:
return SDS_TYPE_5_LEN(flags);
case SDS_TYPE_8:
return SDS_HDR(,s)->len; // 先移动到sds头部的起始地址,进而可以直接获取len字段的值。下同
case SDS_TYPE_16:
return SDS_HDR(,s)->len;
case SDS_TYPE_32:
return SDS_HDR(,s)->len;
case SDS_TYPE_64:
return SDS_HDR(,s)->len;
}
return ;
}

3. 获取buf数组中剩余可用的内存大小

static inline size_t sdsavail(const sds s) {
unsigned char flags = s[-]; // 后移1字节,得到flags字段
switch(flags&SDS_TYPE_MASK) { // 得到sds头部类型
case SDS_TYPE_5: {
return ;
}
case SDS_TYPE_8: {
SDS_HDR_VAR(,s);
return sh->alloc - sh->len; // 总大小减去已使用大小
}
case SDS_TYPE_16: {
SDS_HDR_VAR(,s);
return sh->alloc - sh->len;
}
case SDS_TYPE_32: {
SDS_HDR_VAR(,s);
return sh->alloc - sh->len;
}
case SDS_TYPE_64: {
SDS_HDR_VAR(,s);
return sh->alloc - sh->len;
}
}
return ;
}

4. 使用字符串初始化一个SDS

注意分配时,程序会自动为buf数组最后一个元素后面添加上'\0','\0'对外部完全是透明的,分配内存时自动多分配1个字节保存'\0',buf数组最后自动添加'\0'。

// sds尾部隐含有一个'\0';sds是以len字段来判断是否到达字符串末尾
// 所以sds存储的字符串中间可以出现'\0',即sds字符串是二进制安全的 // 分配一个新sds,buf数组存储内容init
sds sdsnewlen(const void *init, size_t initlen) {
void *sh;
sds s;
char type = sdsReqType(initlen); // 根据长度大小选择合适的sds头部
/* Empty strings are usually created in order to append. Use type 8
* since type 5 is not good at this. */
if (type == SDS_TYPE_5 && initlen == ) type = SDS_TYPE_8;
int hdrlen = sdsHdrSize(type); // 获取sds头部大小
unsigned char *fp; /* flags pointer. */ // 为sds分配内存,总大小为:头部大小+存储字符串的长度+末尾隐含的空字符大小
sh = s_malloc(hdrlen+initlen+);
if (!init)
memset(sh, , hdrlen+initlen+); // 内存初始化为0
if (sh == NULL) return NULL;
s = (char*)sh+hdrlen; // buf数组的起始地址
fp = ((unsigned char*)s)-; // 指向flags字段
// 初始化sds头部的len,alloc,flags字段
switch(type) {
case SDS_TYPE_5: {
*fp = type | (initlen << SDS_TYPE_BITS);
break;
}
case SDS_TYPE_8: {
SDS_HDR_VAR(,s);
sh->len = initlen;
sh->alloc = initlen;
*fp = type;
break;
}
case SDS_TYPE_16: {
SDS_HDR_VAR(,s);
sh->len = initlen;
sh->alloc = initlen;
*fp = type;
break;
}
case SDS_TYPE_32: {
SDS_HDR_VAR(,s);
sh->len = initlen;
sh->alloc = initlen;
*fp = type;
break;
}
case SDS_TYPE_64: {
SDS_HDR_VAR(,s);
sh->len = initlen;
sh->alloc = initlen;
*fp = type;
break;
}
}
// 初始化buf数组
if (initlen && init)
memcpy(s, init, initlen); // 拷贝init到buf数组
s[initlen] = '\0'; // 添加末尾的空字符
return s;
}

5. 空间预分配

当需要将SDS的len增加addlen个字节时,如果SDS剩余空间足够,则什么都不用做。如果剩余空间不够,则会分配新的内存空间,并且采用预分配。新长度newlen为原len+addlen,若newlen小于1M,则为SDS分配新的内存大小为2*newlen;若newlen大于等于1M,则SDS分配新的内存大小为newlen  + 1M。

 // 为sds的len字段增加addlen个字节,剩余空间不足时会引起空间重新分配
sds sdsMakeRoomFor(sds s, size_t addlen) {
void *sh, *newsh;
size_t avail = sdsavail(s);
size_t len, newlen;
char type, oldtype = s[-] & SDS_TYPE_MASK;
int hdrlen; /* Return ASAP if there is enough space left. */
if (avail >= addlen) return s; // sds剩余空间足够 len = sdslen(s);
sh = (char*)s-sdsHdrSize(oldtype);
newlen = (len+addlen); // sds剩余空间不够,新的len为len+addlen // 下面两步实现空间预分配
if (newlen < SDS_MAX_PREALLOC) // 新长度小于1M,则len设为2*(len+addlen)大小
newlen *= ;
else
newlen += SDS_MAX_PREALLOC; // 新长度大于1M,则len设为 len+1M 大小 type = sdsReqType(newlen); // 新len对应的sds头部 /* Don't use type 5: the user is appending to the string and type 5 is
* not able to remember empty space, so sdsMakeRoomFor() must be called
* at every appending operation. */
if (type == SDS_TYPE_5) type = SDS_TYPE_8; hdrlen = sdsHdrSize(type);
if (oldtype==type) {
newsh = s_realloc(sh, hdrlen+newlen+);
if (newsh == NULL) return NULL;
s = (char*)newsh+hdrlen;
} else {
/* Since the header size changes, need to move the string forward,
* and can't use realloc */
newsh = s_malloc(hdrlen+newlen+);
if (newsh == NULL) return NULL;
memcpy((char*)newsh+hdrlen, s, len+);
s_free(sh);
s = (char*)newsh+hdrlen;
s[-] = type;
sdssetlen(s, len);
}
sdssetalloc(s, newlen);
return s;
}

6. 惰性空间释放

当要清空一个SDS时,并不真正释放其内存,而是设置len字段为0即可,这样当之后再次使用到该SDS时,可避免重新分配内存,从而提高效率。

 // 清空sds内容,len字段清为0
// 但之前的空间并未释放,可避免以后的重新分配内存。实现惰性空间释放
void sdsclear(sds s) {
sdssetlen(s, );
s[] = '\0';
}

只要理解了sds和sdshdr,其操作函数便很容易理解。剩下的就不一一介绍了,我在阅读过程中也做了部分注释,下面附上源码及注释。SDS共两个文件:sds.h和sds.c

sds.h :

/* SDSLib 2.0 -- A C dynamic strings library
* 简单动态字符串
*/ #ifndef __SDS_H
#define __SDS_H #define SDS_MAX_PREALLOC (1024*1024) // 1M,空间预分配使用 #include <sys/types.h>
#include <stdarg.h>
#include <stdint.h> // 指向存储数据的起始地址
typedef char *sds; /* Note: sdshdr5 is never used, we just access the flags byte directly.
* However is here to document the layout of type 5 SDS strings. */ // sds由两部分组成:sds头部(即下面的各种结构体)、真正存储字符串的字符数组
// 这两部分在内存上连续
// len : 已存储的字符串长度
// alloc : 能存储的字符串的最大容量,不包括sds头部和结尾的NULL字符
// flags : 标志位,最低三位代表了sds头部类型
// buf[] : 字符数组,存储字符串
// __attribute__ ((__packed__)) :
// 使得编译器不会因为内存对齐而在结构体中填充字节,以保证内存的紧凑,使得下面的s[-1]得到正确的地址
// char buf[] : 初始时不占用内存,而且使得头部内存和存储字符串的内存地址连续。
// sdshdr5比较特殊,flags字段低3位代表sds头部类型,高5位代表已存储的字符串长度
// 分为不同类型的头部,目的是为了存储不同长度的字符串使用不同类型,从而节省内存 struct __attribute__ ((__packed__)) sdshdr5 {
unsigned char flags; /* 3 lsb of type, and 5 msb of string length */
char buf[];
};
struct __attribute__ ((__packed__)) sdshdr8 {
uint8_t len; /* used */
uint8_t alloc; /* excluding the header and null terminator */
unsigned char flags; /* 3 lsb of type, 5 unused bits */
char buf[];
};
struct __attribute__ ((__packed__)) sdshdr16 {
uint16_t len; /* used */
uint16_t alloc; /* excluding the header and null terminator */
unsigned char flags; /* 3 lsb of type, 5 unused bits */
char buf[];
};
struct __attribute__ ((__packed__)) sdshdr32 {
uint32_t len; /* used */
uint32_t alloc; /* excluding the header and null terminator */
unsigned char flags; /* 3 lsb of type, 5 unused bits */
char buf[];
};
struct __attribute__ ((__packed__)) sdshdr64 {
uint64_t len; /* used */
uint64_t alloc; /* excluding the header and null terminator */
unsigned char flags; /* 3 lsb of type, 5 unused bits */
char buf[];
}; // flags的低三位代表不同类型的sds头部:
#define SDS_TYPE_5 0
#define SDS_TYPE_8 1
#define SDS_TYPE_16 2
#define SDS_TYPE_32 3
#define SDS_TYPE_64 4
#define SDS_TYPE_MASK 7
#define SDS_TYPE_BITS 3 // 返回一个指向sds头部的起始地址的指针
#define SDS_HDR_VAR(T,s) struct sdshdr##T *sh = (void*)((s)-(sizeof(struct sdshdr##T)));
// 返回sds头部的起始地址
#define SDS_HDR(T,s) ((struct sdshdr##T *)((s)-(sizeof(struct sdshdr##T))))
// 获取sdshdr5类型的sds存储的字符串长度
#define SDS_TYPE_5_LEN(f) ((f)>>SDS_TYPE_BITS) // 获取buf数组中sds存储的字符串长度
static inline size_t sdslen(const sds s) {
unsigned char flags = s[-]; // 内存空间连续,所以往后移1个字节,便是flags字段
switch(flags&SDS_TYPE_MASK) { // 和flags低3位相与,得到sds头部类型
case SDS_TYPE_5:
return SDS_TYPE_5_LEN(flags);
case SDS_TYPE_8:
return SDS_HDR(,s)->len; // 先移动到sds头部的起始地址,进而可以直接获取len字段的值。下同
case SDS_TYPE_16:
return SDS_HDR(,s)->len;
case SDS_TYPE_32:
return SDS_HDR(,s)->len;
case SDS_TYPE_64:
return SDS_HDR(,s)->len;
}
return ;
} // 获取buf数组中剩余可用的内存大小
static inline size_t sdsavail(const sds s) {
unsigned char flags = s[-]; // 后移1字节,得到flags字段
switch(flags&SDS_TYPE_MASK) { // 得到sds头部类型
case SDS_TYPE_5: {
return ;
}
case SDS_TYPE_8: {
SDS_HDR_VAR(,s);
return sh->alloc - sh->len; // 总大小减去已使用大小
}
case SDS_TYPE_16: {
SDS_HDR_VAR(,s);
return sh->alloc - sh->len;
}
case SDS_TYPE_32: {
SDS_HDR_VAR(,s);
return sh->alloc - sh->len;
}
case SDS_TYPE_64: {
SDS_HDR_VAR(,s);
return sh->alloc - sh->len;
}
}
return ;
} // 设置sds头部的len字段
static inline void sdssetlen(sds s, size_t newlen) {
unsigned char flags = s[-];
switch(flags&SDS_TYPE_MASK) {
case SDS_TYPE_5:
{
// 对于sdshdr5,则是设置flags的高5位
unsigned char *fp = ((unsigned char*)s)-;
*fp = SDS_TYPE_5 | (newlen << SDS_TYPE_BITS);
}
break;
case SDS_TYPE_8:
SDS_HDR(,s)->len = newlen;
break;
case SDS_TYPE_16:
SDS_HDR(,s)->len = newlen;
break;
case SDS_TYPE_32:
SDS_HDR(,s)->len = newlen;
break;
case SDS_TYPE_64:
SDS_HDR(,s)->len = newlen;
break;
}
} // 将sds头部的len字段增加inc
static inline void sdsinclen(sds s, size_t inc) {
unsigned char flags = s[-];
switch(flags&SDS_TYPE_MASK) {
case SDS_TYPE_5:
{
// 对于sdshdr5,则是设置flags的高5位
unsigned char *fp = ((unsigned char*)s)-;
unsigned char newlen = SDS_TYPE_5_LEN(flags)+inc;
*fp = SDS_TYPE_5 | (newlen << SDS_TYPE_BITS);
}
break;
case SDS_TYPE_8:
SDS_HDR(,s)->len += inc;
break;
case SDS_TYPE_16:
SDS_HDR(,s)->len += inc;
break;
case SDS_TYPE_32:
SDS_HDR(,s)->len += inc;
break;
case SDS_TYPE_64:
SDS_HDR(,s)->len += inc;
break;
}
} /* sdsalloc() = sdsavail() + sdslen() */
// 获取sds的buf数组总的大小
static inline size_t sdsalloc(const sds s) {
unsigned char flags = s[-];
switch(flags&SDS_TYPE_MASK) {
case SDS_TYPE_5:
return SDS_TYPE_5_LEN(flags);
case SDS_TYPE_8:
return SDS_HDR(,s)->alloc;
case SDS_TYPE_16:
return SDS_HDR(,s)->alloc;
case SDS_TYPE_32:
return SDS_HDR(,s)->alloc;
case SDS_TYPE_64:
return SDS_HDR(,s)->alloc;
}
return ;
} // 设置sds的buf数组总的大小
static inline void sdssetalloc(sds s, size_t newlen) {
unsigned char flags = s[-];
switch(flags&SDS_TYPE_MASK) {
case SDS_TYPE_5:
/* Nothing to do, this type has no total allocation info. */
break;
case SDS_TYPE_8:
SDS_HDR(,s)->alloc = newlen;
break;
case SDS_TYPE_16:
SDS_HDR(,s)->alloc = newlen;
break;
case SDS_TYPE_32:
SDS_HDR(,s)->alloc = newlen;
break;
case SDS_TYPE_64:
SDS_HDR(,s)->alloc = newlen;
break;
}
} sds sdsnewlen(const void *init, size_t initlen);
sds sdsnew(const char *init);
sds sdsempty(void);
sds sdsdup(const sds s);
void sdsfree(sds s);
sds sdsgrowzero(sds s, size_t len);
sds sdscatlen(sds s, const void *t, size_t len);
sds sdscat(sds s, const char *t);
sds sdscatsds(sds s, const sds t);
sds sdscpylen(sds s, const char *t, size_t len);
sds sdscpy(sds s, const char *t); sds sdscatvprintf(sds s, const char *fmt, va_list ap);
#ifdef __GNUC__
sds sdscatprintf(sds s, const char *fmt, ...)
__attribute__((format(printf, , )));
#else
sds sdscatprintf(sds s, const char *fmt, ...);
#endif sds sdscatfmt(sds s, char const *fmt, ...);
sds sdstrim(sds s, const char *cset);
void sdsrange(sds s, int start, int end);
void sdsupdatelen(sds s);
void sdsclear(sds s);
int sdscmp(const sds s1, const sds s2);
sds *sdssplitlen(const char *s, int len, const char *sep, int seplen, int *count);
void sdsfreesplitres(sds *tokens, int count);
void sdstolower(sds s);
void sdstoupper(sds s);
sds sdsfromlonglong(long long value);
sds sdscatrepr(sds s, const char *p, size_t len);
sds *sdssplitargs(const char *line, int *argc);
sds sdsmapchars(sds s, const char *from, const char *to, size_t setlen);
sds sdsjoin(char **argv, int argc, char *sep);
sds sdsjoinsds(sds *argv, int argc, const char *sep, size_t seplen); /* Low level functions exposed to the user API */
sds sdsMakeRoomFor(sds s, size_t addlen);
void sdsIncrLen(sds s, int incr);
sds sdsRemoveFreeSpace(sds s);
size_t sdsAllocSize(sds s);
void *sdsAllocPtr(sds s); /* Export the allocator used by SDS to the program using SDS.
* Sometimes the program SDS is linked to, may use a different set of
* allocators, but may want to allocate or free things that SDS will
* respectively free or allocate. */
void *sds_malloc(size_t size);
void *sds_realloc(void *ptr, size_t size);
void sds_free(void *ptr); #ifdef REDIS_TEST
int sdsTest(int argc, char *argv[]);
#endif #endif

sds.c :

/* SDSLib 2.0 -- A C dynamic strings library
*/ #include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <assert.h>
#include "sds.h"
#include "sdsalloc.h" // 获取type类型的sds对应的头部类型大小
static inline int sdsHdrSize(char type) {
switch(type&SDS_TYPE_MASK) {
case SDS_TYPE_5:
return sizeof(struct sdshdr5);
case SDS_TYPE_8:
return sizeof(struct sdshdr8);
case SDS_TYPE_16:
return sizeof(struct sdshdr16);
case SDS_TYPE_32:
return sizeof(struct sdshdr32);
case SDS_TYPE_64:
return sizeof(struct sdshdr64);
}
return ;
} // 根据不同大小选用不同类型的sds头部
static inline char sdsReqType(size_t string_size) {
if (string_size < <<) // 0~2^5-1
return SDS_TYPE_5;
if (string_size < <<) // 2^5~2^8-1
return SDS_TYPE_8;
if (string_size < <<) // 2^8~2^16-1
return SDS_TYPE_16;
if (string_size < <<) // 2^16~2^32-1
return SDS_TYPE_32;
return SDS_TYPE_64; // 2^32~
} /* Create a new sds string with the content specified by the 'init' pointer
* and 'initlen'.
* If NULL is used for 'init' the string is initialized with zero bytes.
*
* The string is always null-termined (all the sds strings are, always) so
* even if you create an sds string with:
*
* mystring = sdsnewlen("abc",3);
*
* You can print the string with printf() as there is an implicit \0 at the
* end of the string. However the string is binary safe and can contain
* \0 characters in the middle, as the length is stored in the sds header. */ // sds尾部隐含有一个'\0';sds是以len字段来判断是否到达字符串末尾
// 所以sds存储的字符串中间可以出现'\0',即sds字符串是二进制安全的 // 分配一个新sds,buf数组存储内容init
sds sdsnewlen(const void *init, size_t initlen) {
void *sh;
sds s;
char type = sdsReqType(initlen); // 根据长度大小选择合适的sds头部
/* Empty strings are usually created in order to append. Use type 8
* since type 5 is not good at this. */
if (type == SDS_TYPE_5 && initlen == ) type = SDS_TYPE_8;
int hdrlen = sdsHdrSize(type); // 获取sds头部大小
unsigned char *fp; /* flags pointer. */ // 为sds分配内存,总大小为:头部大小+存储字符串的长度+末尾隐含的空字符大小
sh = s_malloc(hdrlen+initlen+);
if (!init)
memset(sh, , hdrlen+initlen+); // 内存初始化为0
if (sh == NULL) return NULL;
s = (char*)sh+hdrlen; // buf数组的起始地址
fp = ((unsigned char*)s)-; // 指向flags字段
// 初始化sds头部的len,alloc,flags字段
switch(type) {
case SDS_TYPE_5: {
*fp = type | (initlen << SDS_TYPE_BITS);
break;
}
case SDS_TYPE_8: {
SDS_HDR_VAR(,s);
sh->len = initlen;
sh->alloc = initlen;
*fp = type;
break;
}
case SDS_TYPE_16: {
SDS_HDR_VAR(,s);
sh->len = initlen;
sh->alloc = initlen;
*fp = type;
break;
}
case SDS_TYPE_32: {
SDS_HDR_VAR(,s);
sh->len = initlen;
sh->alloc = initlen;
*fp = type;
break;
}
case SDS_TYPE_64: {
SDS_HDR_VAR(,s);
sh->len = initlen;
sh->alloc = initlen;
*fp = type;
break;
}
}
// 初始化buf数组
if (initlen && init)
memcpy(s, init, initlen); // 拷贝init到buf数组
s[initlen] = '\0'; // 添加末尾的空字符
return s;
} /* Create an empty (zero length) sds string. Even in this case the string
* always has an implicit null term. */
// 分配一个空的sds
sds sdsempty(void) {
return sdsnewlen("",);
} /* Create a new sds string starting from a null terminated C string. */
// 分配一个新sds,以c字符串初始化其buf数组
sds sdsnew(const char *init) {
size_t initlen = (init == NULL) ? : strlen(init);
return sdsnewlen(init, initlen);
} /* Duplicate an sds string. */
// 复制一个sds
sds sdsdup(const sds s) {
return sdsnewlen(s, sdslen(s));
} /* Free an sds string. No operation is performed if 's' is NULL. */
// 释放一个sds
void sdsfree(sds s) {
if (s == NULL) return;
s_free((char*)s-sdsHdrSize(s[-])); // 先移动到sds头部起始地址,再释放
} /* Set the sds string length to the length as obtained with strlen(), so
* considering as content only up to the first null term character.
*
* This function is useful when the sds string is hacked manually in some
* way, like in the following example:
*
* s = sdsnew("foobar");
* s[2] = '\0';
* sdsupdatelen(s);
* printf("%d\n", sdslen(s));
*
* The output will be "2", but if we comment out the call to sdsupdatelen()
* the output will be "6" as the string was modified but the logical length
* remains 6 bytes. */ // 以第1个'\0'位置为sds长度,重新设置sds长度
// 这样做目的是将第一个'\0'后面的部分全部截断
void sdsupdatelen(sds s) {
int reallen = strlen(s); // 以strlen()来计算长度,到第1个'\0'截止
sdssetlen(s, reallen);
} /* Modify an sds string in-place to make it empty (zero length).
* However all the existing buffer is not discarded but set as free space
* so that next append operations will not require allocations up to the
* number of bytes previously available. */ // 清空sds内容,len字段清为0
// 但之前的空间并未释放,可避免以后的重新分配内存。实现惰性空间释放
void sdsclear(sds s) {
sdssetlen(s, );
s[] = '\0';
} /* Enlarge the free space at the end of the sds string so that the caller
* is sure that after calling this function can overwrite up to addlen
* bytes after the end of the string, plus one more byte for nul term.
*
* Note: this does not change the *length* of the sds string as returned
* by sdslen(), but only the free buffer space we have. */ // 为sds的len字段增加addlen个字节,剩余空间不足时会引起空间重新分配
sds sdsMakeRoomFor(sds s, size_t addlen) {
void *sh, *newsh;
size_t avail = sdsavail(s);
size_t len, newlen;
char type, oldtype = s[-] & SDS_TYPE_MASK;
int hdrlen; /* Return ASAP if there is enough space left. */
if (avail >= addlen) return s; // sds剩余空间足够 len = sdslen(s);
sh = (char*)s-sdsHdrSize(oldtype);
newlen = (len+addlen); // sds剩余空间不够,新的len为len+addlen // 下面两步实现空间预分配
if (newlen < SDS_MAX_PREALLOC) // 新长度小于1M,则len设为2*(len+addlen)大小
newlen *= ;
else
newlen += SDS_MAX_PREALLOC; // 新长度大于1M,则len设为 len+1M 大小 type = sdsReqType(newlen); // 新len对应的sds头部 /* Don't use type 5: the user is appending to the string and type 5 is
* not able to remember empty space, so sdsMakeRoomFor() must be called
* at every appending operation. */
if (type == SDS_TYPE_5) type = SDS_TYPE_8; hdrlen = sdsHdrSize(type);
if (oldtype==type) {
newsh = s_realloc(sh, hdrlen+newlen+);
if (newsh == NULL) return NULL;
s = (char*)newsh+hdrlen;
} else {
/* Since the header size changes, need to move the string forward,
* and can't use realloc */
newsh = s_malloc(hdrlen+newlen+);
if (newsh == NULL) return NULL;
memcpy((char*)newsh+hdrlen, s, len+);
s_free(sh);
s = (char*)newsh+hdrlen;
s[-] = type;
sdssetlen(s, len);
}
sdssetalloc(s, newlen);
return s;
} /* Reallocate the sds string so that it has no free space at the end. The
* contained string remains not altered, but next concatenation operations
* will require a reallocation.
*
* After the call, the passed sds string is no longer valid and all the
* references must be substituted with the new pointer returned by the call. */
sds sdsRemoveFreeSpace(sds s) {
void *sh, *newsh;
char type, oldtype = s[-] & SDS_TYPE_MASK;
int hdrlen;
size_t len = sdslen(s);
sh = (char*)s-sdsHdrSize(oldtype); type = sdsReqType(len);
hdrlen = sdsHdrSize(type);
if (oldtype==type) {
newsh = s_realloc(sh, hdrlen+len+);
if (newsh == NULL) return NULL;
s = (char*)newsh+hdrlen;
} else {
newsh = s_malloc(hdrlen+len+);
if (newsh == NULL) return NULL;
memcpy((char*)newsh+hdrlen, s, len+);
s_free(sh);
s = (char*)newsh+hdrlen;
s[-] = type;
sdssetlen(s, len);
}
sdssetalloc(s, len);
return s;
} /* Return the total size of the allocation of the specifed sds string,
* including:
* 1) The sds header before the pointer.
* 2) The string.
* 3) The free buffer at the end if any.
* 4) The implicit null term.
*/
// 返回sds的总长度:sds头部+alloc字段+结尾的空字符
size_t sdsAllocSize(sds s) {
size_t alloc = sdsalloc(s);
return sdsHdrSize(s[-])+alloc+;
} /* Return the pointer of the actual SDS allocation (normally SDS strings
* are referenced by the start of the string buffer). */
// 返回sds的起始地址
void *sdsAllocPtr(sds s) {
return (void*) (s-sdsHdrSize(s[-]));
} /* Increment the sds length and decrements the left free space at the
* end of the string according to 'incr'. Also set the null term
* in the new end of the string.
*
* This function is used in order to fix the string length after the
* user calls sdsMakeRoomFor(), writes something after the end of
* the current string, and finally needs to set the new length.
*
* Note: it is possible to use a negative increment in order to
* right-trim the string.
*
* Usage example:
*
* Using sdsIncrLen() and sdsMakeRoomFor() it is possible to mount the
* following schema, to cat bytes coming from the kernel to the end of an
* sds string without copying into an intermediate buffer:
*
* oldlen = sdslen(s);
* s = sdsMakeRoomFor(s, BUFFER_SIZE);
* nread = read(fd, s+oldlen, BUFFER_SIZE);
* ... check for nread <= 0 and handle it ...
* sdsIncrLen(s, nread);
*/ // 更新sds的len字段,incr可以为负,表示减少len
void sdsIncrLen(sds s, int incr) {
unsigned char flags = s[-];
size_t len;
switch(flags&SDS_TYPE_MASK) {
case SDS_TYPE_5: {
unsigned char *fp = ((unsigned char*)s)-;
unsigned char oldlen = SDS_TYPE_5_LEN(flags);
assert((incr > && oldlen+incr < ) || (incr < && oldlen >= (unsigned int)(-incr)));
*fp = SDS_TYPE_5 | ((oldlen+incr) << SDS_TYPE_BITS);
len = oldlen+incr;
break;
}
case SDS_TYPE_8: {
SDS_HDR_VAR(,s);
assert((incr >= && sh->alloc-sh->len >= incr) || (incr < && sh->len >= (unsigned int)(-incr)));
len = (sh->len += incr);
break;
}
case SDS_TYPE_16: {
SDS_HDR_VAR(,s);
assert((incr >= && sh->alloc-sh->len >= incr) || (incr < && sh->len >= (unsigned int)(-incr)));
len = (sh->len += incr);
break;
}
case SDS_TYPE_32: {
SDS_HDR_VAR(,s);
assert((incr >= && sh->alloc-sh->len >= (unsigned int)incr) || (incr < && sh->len >= (unsigned int)(-incr)));
len = (sh->len += incr);
break;
}
case SDS_TYPE_64: {
SDS_HDR_VAR(,s);
assert((incr >= && sh->alloc-sh->len >= (uint64_t)incr) || (incr < && sh->len >= (uint64_t)(-incr)));
len = (sh->len += incr);
break;
}
default: len = ; /* Just to avoid compilation warnings. */
}
s[len] = '\0';
} /* Grow the sds to have the specified length. Bytes that were not part of
* the original length of the sds will be set to zero.
*
* if the specified length is smaller than the current length, no operation
* is performed. */ // 为sds分配len大小的空间,len小于目前的len字段,则什么都不做
sds sdsgrowzero(sds s, size_t len) {
size_t curlen = sdslen(s); if (len <= curlen) return s;
s = sdsMakeRoomFor(s,len-curlen);
if (s == NULL) return NULL; /* Make sure added region doesn't contain garbage */
memset(s+curlen,,(len-curlen+)); /* also set trailing \0 byte */
sdssetlen(s, len);
return s;
} /* Append the specified binary-safe string pointed by 't' of 'len' bytes to the
* end of the specified sds string 's'.
*
* After the call, the passed sds string is no longer valid and all the
* references must be substituted with the new pointer returned by the call. */ // 在原sds后追加内容*t
sds sdscatlen(sds s, const void *t, size_t len) {
size_t curlen = sdslen(s); s = sdsMakeRoomFor(s,len);
if (s == NULL) return NULL;
memcpy(s+curlen, t, len);
sdssetlen(s, curlen+len);
s[curlen+len] = '\0';
return s;
} /* Append the specified null termianted C string to the sds string 's'.
*
* After the call, the passed sds string is no longer valid and all the
* references must be substituted with the new pointer returned by the call. */ // 在原sds后追加字符串
sds sdscat(sds s, const char *t) {
return sdscatlen(s, t, strlen(t));
} /* Append the specified sds 't' to the existing sds 's'.
*
* After the call, the modified sds string is no longer valid and all the
* references must be substituted with the new pointer returned by the call. */ // 在原sds后追加sds
sds sdscatsds(sds s, const sds t) {
return sdscatlen(s, t, sdslen(t));
} /* Destructively modify the sds string 's' to hold the specified binary
* safe string pointed by 't' of length 'len' bytes. */ // 将长度为len的字符串*t拷贝到sds
sds sdscpylen(sds s, const char *t, size_t len) {
if (sdsalloc(s) < len) {
s = sdsMakeRoomFor(s,len-sdslen(s));
if (s == NULL) return NULL;
}
memcpy(s, t, len);
s[len] = '\0';
sdssetlen(s, len);
return s;
} /* Like sdscpylen() but 't' must be a null-termined string so that the length
* of the string is obtained with strlen(). */
// 将字符串*t拷贝到sds
sds sdscpy(sds s, const char *t) {
return sdscpylen(s, t, strlen(t));
} /* Helper for sdscatlonglong() doing the actual number -> string
* conversion. 's' must point to a string with room for at least
* SDS_LLSTR_SIZE bytes.
*
* The function returns the length of the null-terminated string
* representation stored at 's'. */
#define SDS_LLSTR_SIZE 21 // 将一个long long类型的值转换为一个字符串
int sdsll2str(char *s, long long value) {
char *p, aux;
unsigned long long v;
size_t l; /* Generate the string representation, this method produces
* an reversed string. */
v = (value < ) ? -value : value;
p = s;
do {
*p++ = ''+(v%);
v /= ;
} while(v);
if (value < ) *p++ = '-'; /* Compute length and add null term. */
l = p-s;
*p = '\0'; /* Reverse the string. */
p--;
while(s < p) {
aux = *s;
*s = *p;
*p = aux;
s++;
p--;
}
return l;
} /* Identical sdsll2str(), but for unsigned long long type. */ // 将一个unsigned long long类型的值转换为一个字符串
int sdsull2str(char *s, unsigned long long v) {
char *p, aux;
size_t l; /* Generate the string representation, this method produces
* an reversed string. */
p = s;
do {
*p++ = ''+(v%);
v /= ;
} while(v); /* Compute length and add null term. */
l = p-s;
*p = '\0'; /* Reverse the string. */
p--;
while(s < p) {
aux = *s;
*s = *p;
*p = aux;
s++;
p--;
}
return l;
} /* Create an sds string from a long long value. It is much faster than:
*
* sdscatprintf(sdsempty(),"%lld\n", value);
*/ // 将一个long long类型的值以字符串的形式保存为sds
sds sdsfromlonglong(long long value) {
char buf[SDS_LLSTR_SIZE];
int len = sdsll2str(buf,value); return sdsnewlen(buf,len);
} /* Like sdscatprintf() but gets va_list instead of being variadic. */ // 打印不定参数的内容到sds
sds sdscatvprintf(sds s, const char *fmt, va_list ap) {
va_list cpy;
char staticbuf[], *buf = staticbuf, *t;
size_t buflen = strlen(fmt)*; /* We try to start using a static buffer for speed.
* If not possible we revert to heap allocation. */
if (buflen > sizeof(staticbuf)) {
buf = s_malloc(buflen);
if (buf == NULL) return NULL;
} else {
buflen = sizeof(staticbuf);
} /* Try with buffers two times bigger every time we fail to
* fit the string in the current buffer size. */
while() {
buf[buflen-] = '\0';
va_copy(cpy,ap);
vsnprintf(buf, buflen, fmt, cpy);
va_end(cpy);
if (buf[buflen-] != '\0') {
if (buf != staticbuf) s_free(buf);
buflen *= ;
buf = s_malloc(buflen);
if (buf == NULL) return NULL;
continue;
}
break;
} /* Finally concat the obtained string to the SDS string and return it. */
t = sdscat(s, buf);
if (buf != staticbuf) s_free(buf);
return t;
} /* Append to the sds string 's' a string obtained using printf-alike format
* specifier.
*
* After the call, the modified sds string is no longer valid and all the
* references must be substituted with the new pointer returned by the call.
*
* Example:
*
* s = sdsnew("Sum is: ");
* s = sdscatprintf(s,"%d+%d = %d",a,b,a+b).
*
* Often you need to create a string from scratch with the printf-alike
* format. When this is the need, just use sdsempty() as the target string:
*
* s = sdscatprintf(sdsempty(), "... your format ...", args);
*/ // 打印不定参数的内容到sds
sds sdscatprintf(sds s, const char *fmt, ...) {
va_list ap;
char *t;
va_start(ap, fmt);
t = sdscatvprintf(s,fmt,ap);
va_end(ap);
return t;
} /* This function is similar to sdscatprintf, but much faster as it does
* not rely on sprintf() family functions implemented by the libc that
* are often very slow. Moreover directly handling the sds string as
* new data is concatenated provides a performance improvement.
*
* However this function only handles an incompatible subset of printf-alike
* format specifiers:
*
* %s - C String
* %S - SDS string
* %i - signed int
* %I - 64 bit signed integer (long long, int64_t)
* %u - unsigned int
* %U - 64 bit unsigned integer (unsigned long long, uint64_t)
* %% - Verbatim "%" character.
*/ // 格式化输出字符串到sds
sds sdscatfmt(sds s, char const *fmt, ...) {
size_t initlen = sdslen(s);
const char *f = fmt;
int i;
va_list ap; va_start(ap,fmt);
f = fmt; /* Next format specifier byte to process. */
i = initlen; /* Position of the next byte to write to dest str. */
while(*f) {
char next, *str;
size_t l;
long long num;
unsigned long long unum; /* Make sure there is always space for at least 1 char. */
if (sdsavail(s)==) {
s = sdsMakeRoomFor(s,);
} switch(*f) {
case '%':
next = *(f+);
f++;
switch(next) {
case 's':
case 'S':
str = va_arg(ap,char*);
l = (next == 's') ? strlen(str) : sdslen(str);
if (sdsavail(s) < l) {
s = sdsMakeRoomFor(s,l);
}
memcpy(s+i,str,l);
sdsinclen(s,l);
i += l;
break;
case 'i':
case 'I':
if (next == 'i')
num = va_arg(ap,int);
else
num = va_arg(ap,long long);
{
char buf[SDS_LLSTR_SIZE];
l = sdsll2str(buf,num);
if (sdsavail(s) < l) {
s = sdsMakeRoomFor(s,l);
}
memcpy(s+i,buf,l);
sdsinclen(s,l);
i += l;
}
break;
case 'u':
case 'U':
if (next == 'u')
unum = va_arg(ap,unsigned int);
else
unum = va_arg(ap,unsigned long long);
{
char buf[SDS_LLSTR_SIZE];
l = sdsull2str(buf,unum);
if (sdsavail(s) < l) {
s = sdsMakeRoomFor(s,l);
}
memcpy(s+i,buf,l);
sdsinclen(s,l);
i += l;
}
break;
default: /* Handle %% and generally %<unknown>. */
s[i++] = next;
sdsinclen(s,);
break;
}
break;
default:
s[i++] = *f;
sdsinclen(s,);
break;
}
f++;
}
va_end(ap); /* Add null-term */
s[i] = '\0';
return s;
} /* Remove the part of the string from left and from right composed just of
* contiguous characters found in 'cset', that is a null terminted C string.
*
* After the call, the modified sds string is no longer valid and all the
* references must be substituted with the new pointer returned by the call.
*
* Example:
*
* s = sdsnew("AA...AA.a.aa.aHelloWorld :::");
* s = sdstrim(s,"Aa. :");
* printf("%s\n", s);
*
* Output will be just "Hello World".
*/
sds sdstrim(sds s, const char *cset) {
char *start, *end, *sp, *ep;
size_t len; sp = start = s;
ep = end = s+sdslen(s)-;
while(sp <= end && strchr(cset, *sp)) sp++;
while(ep > sp && strchr(cset, *ep)) ep--;
len = (sp > ep) ? : ((ep-sp)+);
if (s != sp) memmove(s, sp, len);
s[len] = '\0';
sdssetlen(s,len);
return s;
} /* Turn the string into a smaller (or equal) string containing only the
* substring specified by the 'start' and 'end' indexes.
*
* start and end can be negative, where -1 means the last character of the
* string, -2 the penultimate character, and so forth.
*
* The interval is inclusive, so the start and end characters will be part
* of the resulting string.
*
* The string is modified in-place.
*
* Example:
*
* s = sdsnew("Hello World");
* sdsrange(s,1,-1); => "ello World"
*/
void sdsrange(sds s, int start, int end) {
size_t newlen, len = sdslen(s); if (len == ) return;
if (start < ) {
start = len+start;
if (start < ) start = ;
}
if (end < ) {
end = len+end;
if (end < ) end = ;
}
newlen = (start > end) ? : (end-start)+;
if (newlen != ) {
if (start >= (signed)len) {
newlen = ;
} else if (end >= (signed)len) {
end = len-;
newlen = (start > end) ? : (end-start)+;
}
} else {
start = ;
}
if (start && newlen) memmove(s, s+start, newlen);
s[newlen] = ;
sdssetlen(s,newlen);
} /* Apply tolower() to every character of the sds string 's'. */
void sdstolower(sds s) {
int len = sdslen(s), j; for (j = ; j < len; j++) s[j] = tolower(s[j]);
} /* Apply toupper() to every character of the sds string 's'. */
void sdstoupper(sds s) {
int len = sdslen(s), j; for (j = ; j < len; j++) s[j] = toupper(s[j]);
} /* Compare two sds strings s1 and s2 with memcmp().
*
* Return value:
*
* positive if s1 > s2.
* negative if s1 < s2.
* 0 if s1 and s2 are exactly the same binary string.
*
* If two strings share exactly the same prefix, but one of the two has
* additional characters, the longer string is considered to be greater than
* the smaller one. */
int sdscmp(const sds s1, const sds s2) {
size_t l1, l2, minlen;
int cmp; l1 = sdslen(s1);
l2 = sdslen(s2);
minlen = (l1 < l2) ? l1 : l2;
cmp = memcmp(s1,s2,minlen);
if (cmp == ) return l1-l2;
return cmp;
} /* Split 's' with separator in 'sep'. An array
* of sds strings is returned. *count will be set
* by reference to the number of tokens returned.
*
* On out of memory, zero length string, zero length
* separator, NULL is returned.
*
* Note that 'sep' is able to split a string using
* a multi-character separator. For example
* sdssplit("foo_-_bar","_-_"); will return two
* elements "foo" and "bar".
*
* This version of the function is binary-safe but
* requires length arguments. sdssplit() is just the
* same function but for zero-terminated strings.
*/
sds *sdssplitlen(const char *s, int len, const char *sep, int seplen, int *count) {
int elements = , slots = , start = , j;
sds *tokens; if (seplen < || len < ) return NULL; tokens = s_malloc(sizeof(sds)*slots);
if (tokens == NULL) return NULL; if (len == ) {
*count = ;
return tokens;
}
for (j = ; j < (len-(seplen-)); j++) {
/* make sure there is room for the next element and the final one */
if (slots < elements+) {
sds *newtokens; slots *= ;
newtokens = s_realloc(tokens,sizeof(sds)*slots);
if (newtokens == NULL) goto cleanup;
tokens = newtokens;
}
/* search the separator */
if ((seplen == && *(s+j) == sep[]) || (memcmp(s+j,sep,seplen) == )) {
tokens[elements] = sdsnewlen(s+start,j-start);
if (tokens[elements] == NULL) goto cleanup;
elements++;
start = j+seplen;
j = j+seplen-; /* skip the separator */
}
}
/* Add the final element. We are sure there is room in the tokens array. */
tokens[elements] = sdsnewlen(s+start,len-start);
if (tokens[elements] == NULL) goto cleanup;
elements++;
*count = elements;
return tokens; cleanup:
{
int i;
for (i = ; i < elements; i++) sdsfree(tokens[i]);
s_free(tokens);
*count = ;
return NULL;
}
} /* Free the result returned by sdssplitlen(), or do nothing if 'tokens' is NULL. */
void sdsfreesplitres(sds *tokens, int count) {
if (!tokens) return;
while(count--)
sdsfree(tokens[count]);
s_free(tokens);
} /* Append to the sds string "s" an escaped string representation where
* all the non-printable characters (tested with isprint()) are turned into
* escapes in the form "\n\r\a...." or "\x<hex-number>".
*
* After the call, the modified sds string is no longer valid and all the
* references must be substituted with the new pointer returned by the call. */
sds sdscatrepr(sds s, const char *p, size_t len) {
s = sdscatlen(s,"\"",);
while(len--) {
switch(*p) {
case '\\':
case '"':
s = sdscatprintf(s,"\\%c",*p);
break;
case '\n': s = sdscatlen(s,"\\n",); break;
case '\r': s = sdscatlen(s,"\\r",); break;
case '\t': s = sdscatlen(s,"\\t",); break;
case '\a': s = sdscatlen(s,"\\a",); break;
case '\b': s = sdscatlen(s,"\\b",); break;
default:
if (isprint(*p))
s = sdscatprintf(s,"%c",*p);
else
s = sdscatprintf(s,"\\x%02x",(unsigned char)*p);
break;
}
p++;
}
return sdscatlen(s,"\"",);
} /* Helper function for sdssplitargs() that returns non zero if 'c'
* is a valid hex digit. */
int is_hex_digit(char c) {
return (c >= '' && c <= '') || (c >= 'a' && c <= 'f') ||
(c >= 'A' && c <= 'F');
} /* Helper function for sdssplitargs() that converts a hex digit into an
* integer from 0 to 15 */
int hex_digit_to_int(char c) {
switch(c) {
case '': return ;
case '': return ;
case '': return ;
case '': return ;
case '': return ;
case '': return ;
case '': return ;
case '': return ;
case '': return ;
case '': return ;
case 'a': case 'A': return ;
case 'b': case 'B': return ;
case 'c': case 'C': return ;
case 'd': case 'D': return ;
case 'e': case 'E': return ;
case 'f': case 'F': return ;
default: return ;
}
} /* Split a line into arguments, where every argument can be in the
* following programming-language REPL-alike form:
*
* foo bar "newline are supported\n" and "\xff\x00otherstuff"
*
* The number of arguments is stored into *argc, and an array
* of sds is returned.
*
* The caller should free the resulting array of sds strings with
* sdsfreesplitres().
*
* Note that sdscatrepr() is able to convert back a string into
* a quoted string in the same format sdssplitargs() is able to parse.
*
* The function returns the allocated tokens on success, even when the
* input string is empty, or NULL if the input contains unbalanced
* quotes or closed quotes followed by non space characters
* as in: "foo"bar or "foo'
*/
sds *sdssplitargs(const char *line, int *argc) {
const char *p = line;
char *current = NULL;
char **vector = NULL; *argc = ;
while() {
/* skip blanks */
while(*p && isspace(*p)) p++;
if (*p) {
/* get a token */
int inq=; /* set to 1 if we are in "quotes" */
int insq=; /* set to 1 if we are in 'single quotes' */
int done=; if (current == NULL) current = sdsempty();
while(!done) {
if (inq) {
if (*p == '\\' && *(p+) == 'x' &&
is_hex_digit(*(p+)) &&
is_hex_digit(*(p+)))
{
unsigned char byte; byte = (hex_digit_to_int(*(p+))*)+
hex_digit_to_int(*(p+));
current = sdscatlen(current,(char*)&byte,);
p += ;
} else if (*p == '\\' && *(p+)) {
char c; p++;
switch(*p) {
case 'n': c = '\n'; break;
case 'r': c = '\r'; break;
case 't': c = '\t'; break;
case 'b': c = '\b'; break;
case 'a': c = '\a'; break;
default: c = *p; break;
}
current = sdscatlen(current,&c,);
} else if (*p == '"') {
/* closing quote must be followed by a space or
* nothing at all. */
if (*(p+) && !isspace(*(p+))) goto err;
done=;
} else if (!*p) {
/* unterminated quotes */
goto err;
} else {
current = sdscatlen(current,p,);
}
} else if (insq) {
if (*p == '\\' && *(p+) == '\'') {
p++;
current = sdscatlen(current,"'",);
} else if (*p == '\'') {
/* closing quote must be followed by a space or
* nothing at all. */
if (*(p+) && !isspace(*(p+))) goto err;
done=;
} else if (!*p) {
/* unterminated quotes */
goto err;
} else {
current = sdscatlen(current,p,);
}
} else {
switch(*p) {
case ' ':
case '\n':
case '\r':
case '\t':
case '\0':
done=;
break;
case '"':
inq=;
break;
case '\'':
insq=;
break;
default:
current = sdscatlen(current,p,);
break;
}
}
if (*p) p++;
}
/* add the token to the vector */
vector = s_realloc(vector,((*argc)+)*sizeof(char*));
vector[*argc] = current;
(*argc)++;
current = NULL;
} else {
/* Even on empty input string return something not NULL. */
if (vector == NULL) vector = s_malloc(sizeof(void*));
return vector;
}
} err:
while((*argc)--)
sdsfree(vector[*argc]);
s_free(vector);
if (current) sdsfree(current);
*argc = ;
return NULL;
} /* Modify the string substituting all the occurrences of the set of
* characters specified in the 'from' string to the corresponding character
* in the 'to' array.
*
* For instance: sdsmapchars(mystring, "ho", "01", 2)
* will have the effect of turning the string "hello" into "0ell1".
*
* The function returns the sds string pointer, that is always the same
* as the input pointer since no resize is needed. */
sds sdsmapchars(sds s, const char *from, const char *to, size_t setlen) {
size_t j, i, l = sdslen(s); for (j = ; j < l; j++) {
for (i = ; i < setlen; i++) {
if (s[j] == from[i]) {
s[j] = to[i];
break;
}
}
}
return s;
} /* Join an array of C strings using the specified separator (also a C string).
* Returns the result as an sds string. */
sds sdsjoin(char **argv, int argc, char *sep) {
sds join = sdsempty();
int j; for (j = ; j < argc; j++) {
join = sdscat(join, argv[j]);
if (j != argc-) join = sdscat(join,sep);
}
return join;
} /* Like sdsjoin, but joins an array of SDS strings. */
sds sdsjoinsds(sds *argv, int argc, const char *sep, size_t seplen) {
sds join = sdsempty();
int j; for (j = ; j < argc; j++) {
join = sdscatsds(join, argv[j]);
if (j != argc-) join = sdscatlen(join,sep,seplen);
}
return join;
} /* Wrappers to the allocators used by SDS. Note that SDS will actually
* just use the macros defined into sdsalloc.h in order to avoid to pay
* the overhead of function calls. Here we define these wrappers only for
* the programs SDS is linked to, if they want to touch the SDS internals
* even if they use a different allocator. */
void *sds_malloc(size_t size) { return s_malloc(size); }
void *sds_realloc(void *ptr, size_t size) { return s_realloc(ptr,size); }
void sds_free(void *ptr) { s_free(ptr); } #if defined(SDS_TEST_MAIN)
#include <stdio.h>
#include "testhelp.h"
#include "limits.h" #define UNUSED(x) (void)(x)
int sdsTest(void) {
{
sds x = sdsnew("foo"), y; test_cond("Create a string and obtain the length",
sdslen(x) == && memcmp(x,"foo\0",) == ) sdsfree(x);
x = sdsnewlen("foo",);
test_cond("Create a string with specified length",
sdslen(x) == && memcmp(x,"fo\0",) == ) x = sdscat(x,"bar");
test_cond("Strings concatenation",
sdslen(x) == && memcmp(x,"fobar\0",) == ); x = sdscpy(x,"a");
test_cond("sdscpy() against an originally longer string",
sdslen(x) == && memcmp(x,"a\0",) == ) x = sdscpy(x,"xyzxxxxxxxxxxyyyyyyyyyykkkkkkkkkk");
test_cond("sdscpy() against an originally shorter string",
sdslen(x) == &&
memcmp(x,"xyzxxxxxxxxxxyyyyyyyyyykkkkkkkkkk\0",) == ) sdsfree(x);
x = sdscatprintf(sdsempty(),"%d",);
test_cond("sdscatprintf() seems working in the base case",
sdslen(x) == && memcmp(x,"123\0",) == ) sdsfree(x);
x = sdsnew("--");
x = sdscatfmt(x, "Hello %s World %I,%I--", "Hi!", LLONG_MIN,LLONG_MAX);
test_cond("sdscatfmt() seems working in the base case",
sdslen(x) == &&
memcmp(x,"--Hello Hi! World -9223372036854775808,"
"9223372036854775807--",) == )
printf("[%s]\n",x); sdsfree(x);
x = sdsnew("--");
x = sdscatfmt(x, "%u,%U--", UINT_MAX, ULLONG_MAX);
test_cond("sdscatfmt() seems working with unsigned numbers",
sdslen(x) == &&
memcmp(x,"--4294967295,18446744073709551615--",) == ) sdsfree(x);
x = sdsnew(" x ");
sdstrim(x," x");
test_cond("sdstrim() works when all chars match",
sdslen(x) == ) sdsfree(x);
x = sdsnew(" x ");
sdstrim(x," ");
test_cond("sdstrim() works when a single char remains",
sdslen(x) == && x[] == 'x') sdsfree(x);
x = sdsnew("xxciaoyyy");
sdstrim(x,"xy");
test_cond("sdstrim() correctly trims characters",
sdslen(x) == && memcmp(x,"ciao\0",) == ) y = sdsdup(x);
sdsrange(y,,);
test_cond("sdsrange(...,1,1)",
sdslen(y) == && memcmp(y,"i\0",) == ) sdsfree(y);
y = sdsdup(x);
sdsrange(y,,-);
test_cond("sdsrange(...,1,-1)",
sdslen(y) == && memcmp(y,"iao\0",) == ) sdsfree(y);
y = sdsdup(x);
sdsrange(y,-,-);
test_cond("sdsrange(...,-2,-1)",
sdslen(y) == && memcmp(y,"ao\0",) == ) sdsfree(y);
y = sdsdup(x);
sdsrange(y,,);
test_cond("sdsrange(...,2,1)",
sdslen(y) == && memcmp(y,"\0",) == ) sdsfree(y);
y = sdsdup(x);
sdsrange(y,,);
test_cond("sdsrange(...,1,100)",
sdslen(y) == && memcmp(y,"iao\0",) == ) sdsfree(y);
y = sdsdup(x);
sdsrange(y,,);
test_cond("sdsrange(...,100,100)",
sdslen(y) == && memcmp(y,"\0",) == ) sdsfree(y);
sdsfree(x);
x = sdsnew("foo");
y = sdsnew("foa");
test_cond("sdscmp(foo,foa)", sdscmp(x,y) > ) sdsfree(y);
sdsfree(x);
x = sdsnew("bar");
y = sdsnew("bar");
test_cond("sdscmp(bar,bar)", sdscmp(x,y) == ) sdsfree(y);
sdsfree(x);
x = sdsnew("aar");
y = sdsnew("bar");
test_cond("sdscmp(bar,bar)", sdscmp(x,y) < ) sdsfree(y);
sdsfree(x);
x = sdsnewlen("\a\n\0foo\r",);
y = sdscatrepr(sdsempty(),x,sdslen(x));
test_cond("sdscatrepr(...data...)",
memcmp(y,"\"\\a\\n\\x00foo\\r\"",) == ) {
unsigned int oldfree;
char *p;
int step = , j, i; sdsfree(x);
sdsfree(y);
x = sdsnew("");
test_cond("sdsnew() free/len buffers", sdslen(x) == && sdsavail(x) == ); /* Run the test a few times in order to hit the first two
* SDS header types. */
for (i = ; i < ; i++) {
int oldlen = sdslen(x);
x = sdsMakeRoomFor(x,step);
int type = x[-]&SDS_TYPE_MASK; test_cond("sdsMakeRoomFor() len", sdslen(x) == oldlen);
if (type != SDS_TYPE_5) {
test_cond("sdsMakeRoomFor() free", sdsavail(x) >= step);
oldfree = sdsavail(x);
}
p = x+oldlen;
for (j = ; j < step; j++) {
p[j] = 'A'+j;
}
sdsIncrLen(x,step);
}
test_cond("sdsMakeRoomFor() content",
memcmp("0ABCDEFGHIJABCDEFGHIJABCDEFGHIJABCDEFGHIJABCDEFGHIJABCDEFGHIJABCDEFGHIJABCDEFGHIJABCDEFGHIJABCDEFGHIJ",x,) == );
test_cond("sdsMakeRoomFor() final length",sdslen(x)==); sdsfree(x);
}
}
test_report()
return ;
}
#endif #ifdef SDS_TEST_MAIN
int main(void) {
return sdsTest();
}
#endif

Redis—数据结构之sds的更多相关文章

  1. Redis数据结构之sds基本操作函数

    本文及后续文章,Redis版本均是v3.2.8 本篇文章讲解sds基本操作函数,我们从源码角度来进一步理解. 一.sds创建函数和销毁 sds创建函数 /* Create a new sds stri ...

  2. Redis数据结构:SDS

    1. 简单动态字符串(simple dynamic string,SDS)是Redis的默认字符串表示结构,底层的string都是基于SDS实现.Redis基于C语言,并引用了部分C函数. 使用场景: ...

  3. redis数据结构存储SDS设计细节(redis的设计与实现笔记)

    redis虽说是用C语言开发的,但是redis考虑了性能.安全性.效率性.功能等要,redis底层存储字符串实现,自己实现了名为简单动态字符串(Simple dynamic string)简称SDS的 ...

  4. redis数据结构之SDS

    简介 redis源码虽然是C语言实现的,但是Redis没有直接采用C语言传统的字符串表示,而是构建了一种名叫简单动态字符串(simple dynamic string,SDS)的抽象类型,并将SDS用 ...

  5. Redis 数据结构 之 SDS

    SDS(simple dynamic string),简单动态字符串.s同时它被称为 Hacking String.hack 的地方就在 sds 保存了字符串的长度以及剩余空间.sds 的实现在 sd ...

  6. Redis数据结构之robj

    本文及后续文章,Redis版本均是v3.2.8 我们知道一个database内的这个映射关系是用一个dict来维护的.dict的key固定用一种数据结构来表达,这这数据结构就是动态字符串sds.而va ...

  7. Redis 的底层数据结构(SDS和链表)

    Redis 是一个开源(BSD许可)的,内存中的数据结构存储系统,它可以用作数据库.缓存和消息中间件.可能几乎所有的线上项目都会使用到 Redis,无论你是做缓存.或是用作消息中间件,用起来很简单方便 ...

  8. 深入理解Redis 数据结构—简单动态字符串sds

    Redis是用ANSI C语言编写的,它是一个高性能的key-value数据库,它可以作用在数据库.缓存和消息中间件.其中 Redis 键值对中的键都是 string 类型,而键值对中的值也是有 st ...

  9. Redis数据结构底层知识总结

    Redis数据结构底层总结 本篇文章是基于作者黄建宏写的书Redis设计与实现而做的笔记 数据结构与对象 Redis中数据结构的底层实现包括以下对象: 对象 解释 简单动态字符串 字符串的底层实现 链 ...

随机推荐

  1. BZOJ5020 THUWC2017在美妙的数学王国中畅游(LCT)

    明摆着的LCT,问题在于如何维护答案.首先注意到给出的泰勒展开式,并且所给函数求导非常方便,肯定要用上这玩意.容易想到展开好多次达到精度要求后忽略余项.因为x∈[0,1]而精度又与|x-x0|有关,当 ...

  2. 牛客OI赛制测试赛3 解题报告

    前话: 话说考试描述:普及难度. 于是想在这场比赛上涨点信心. 考出来的结果:Point:480     Rank:40 然而同机房的最好成绩是 510. 没考好啊!有点炸心态,D题一些细节没有注意, ...

  3. 51nod 1376 最长上升子序列的数量 | DP | vector怒刷存在感!

    51nod 1376 最长上升子序列的数量 题解 我们设lis[i]为以位置i结尾的最长上升子序列长度,dp[i]为以位置i结尾的最长上升子序列数量. 显然,dp[i]要从前面的一些位置(设为位置j) ...

  4. 中行P1签名及验签

    分享中国银行快捷.NET P1签名和验签方法代码中ReturnValue为自定义类型请无视 #region 验证签名 /// <summary> /// 验证签名 /// </sum ...

  5. Fowsniff: 1靶机入侵

    一.信息收集 1.存活主机扫描 arp-scan  -l 发现192.168.1.13是目标靶机的IP地址 2.端口扫描 接下来用nmap神器来扫描目标IP地址,命令如下: root@kali2018 ...

  6. 安装Xtrabackup,设置定时备份msyql数据库

    Xtrabackup是由percona提供的mysql数据库备份工具,据官方介绍,这也是世界上惟一一款开源的能够对innodb和xtradb数据库进行热备的工具. XtraDB 存储引擎是由Perco ...

  7. 解题:SCOI 2005 骑士精神

    题面 我把这个当做IDA*的模板题的说,说说我个人对IDA*的理解 IDA*是一个DFS,和A*一样,它也有一个乐观的估价函数.这里这个估价函数是用来限制状态的扩展的,如果当前代价加上乐观的估计都无法 ...

  8. hihocoder #1162 矩阵加速dp

    #1162 : 骨牌覆盖问题·三 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 前两周里,我们讲解了2xN,3xN骨牌覆盖的问题,并且引入了两种不同的递推方法.这一次我 ...

  9. 科学计算三维可视化---TVTK管线与数据加载(数据集)

    一:数据集 三维可视化的第一步是选用合适的数据结构来表示数据,TVTK提供了多种表示不同种类数据的数据集 (一)数据集--ImageData >>> from tvtk.api im ...

  10. 科学计算三维可视化---TVTK入门(安装与测试)

    推文:http://docs.huihoo.com/scipy/scipy-zh-cn/tvtk_intro.html 推文:http://code.enthought.com/pages/mayav ...