CF Round #466的最后一题,颇有难度,正解是带修改莫队算法。

【题意】

给定一个长度为\(n\)的数组\(a\),并且要求执行\(q\)个操作,有两种不同的操作:

①询问一个区间\([l,r]\)中集合\(\left\{c_{0},c_{1},c_{2},\cdots,c_{10^9}\right\}\)的Mex,而\(c_i\)表示数值\(i\)在\([l,r]\)中的出现次数。

②把\(a_p\)修改成\(x\)。

对每一个询问输出答案。

【题解】

典型的区间问题,不要求在线,可以考虑莫队。

有时间轴影响,故使用带修改莫队,时间复杂度应为\(O(n^{\frac{5}{3}})\)。

先对区间的移动进行分析:

使用离散化技巧,把输入数据压缩至\(n+q\)的范围内。

维护两个数组\(count1,count2\),\(count1\)记录(离散后的)每个数的出现次数,\(count2\)记录\(count1\)中的数的出现次数。

那么所求为\(count2\)中第一个为0的下标位置。

对于\(count1,count2\),我们都可以\(O(1)\)维护每个操作对数组的影响,接下来考虑如何计算答案。

\(count2\)数组的变动,让第一个为0的下标位置可能会有很大的跳跃,不好维护,那么我们注意到一个性质:

答案不会超过\(O(\sqrt{n})\),为什么呢?

假如要将\(count2_1,count2_2,\cdots,count2_k\)填满的话,至少需要\(\frac{k(k+1)}{2}\)个元素,可是数组的总长只有\(n\),所以答案必然不能太大。

那么有了这个性质,可以暴力维护答案,维护答案的总的复杂度不会超过\(O(q\sqrt{n})\)。

关于莫队,还有几个需要注意的地方:

第一个是当维护区间变化时,先考虑"伸展",再考虑"压缩",要不然会出现区间\(r<l\)的情况。

一般的莫队不会太在意这个,因为后面会再加回来,但是这题中可能会导致中间结果多减了,导致\(count2\)数组越界。

第二个是在带修改莫队时间轴移动上,千万不要颠倒了时间顺序,这其实也是常识了,不过我被这个卡了一会儿。

#include<cstdio>
#include<algorithm>
using namespace std;
#define F(i,a,b) for(int i=(a);i<=(b);++i)
#include<cmath>
int n,q,tim,cnt,sig,S;
struct Qur{int x,y,t,i;}Qs[100001];
int a[100001],b[200001],blk[100001];
inline bool cmp(Qur p1,Qur p2){return blk[p1.x]==blk[p2.x]?(blk[p1.y]==blk[p2.y]?p1.t<p2.t:blk[p1.y]<blk[p2.y]):blk[p1.x]<blk[p2.x];}
int p[100001],k[100001],k_[100001],ans[100001];
int count1[200001],count2[100001];
inline void gx1(int i){--count2[count1[i]];++count2[++count1[i]];}
inline void gx2(int i){--count2[count1[i]];++count2[--count1[i]];}
int main(){
scanf("%d%d",&n,&q); S=(int)pow(n,2.0/3.0);
F(i,1,n) scanf("%d",a+i), b[i]=a[i], blk[i]=(i-1)/S+1;
F(i,1,q){
int opt,x,y; scanf("%d%d%d",&opt,&x,&y);
if(opt==1) Qs[++cnt]=(Qur){x,y,tim,cnt};
else ++tim, b[n+tim]=y, p[tim]=x, k_[tim]=a[x], k[tim]=a[x]=y;
} F(i,1,n) a[i]=b[i];
sort(Qs+1,Qs+cnt+1,cmp); sort(b+1,b+n+tim+1); sig=unique(b+1,b+n+tim+1)-b-1;
F(i,1,n) a[i]=lower_bound(b+1,b+sig+1,a[i])-b;
F(i,1,tim) k[i]=lower_bound(b+1,b+sig+1,k[i])-b, k_[i]=lower_bound(b+1,b+sig+1,k_[i])-b;
count2[0]=sig+10;
int l=1, r=0, t=0;
F(i,1,cnt){
while(Qs[i].x<l) gx1(a[--l]);
while(Qs[i].y>r) gx1(a[++r]);
while(Qs[i].x>l) gx2(a[l++]);
while(Qs[i].y<r) gx2(a[r--]);
while(Qs[i].t>t) ++t, (Qs[i].x<=p[t]&&p[t]<=Qs[i].y)?gx1(k[t]),gx2(k_[t]):void(0), a[p[t]]=k[t];
while(Qs[i].t<t) (Qs[i].x<=p[t]&&p[t]<=Qs[i].y)?gx1(k_[t]),gx2(k[t]):void(0), a[p[t]]=k_[t], --t;
for(ans[Qs[i].i]=1;count2[ans[Qs[i].i]];++ans[Qs[i].i]);
}
F(i,1,cnt) printf("%d\n",ans[i]);
return 0;
}

【codeforces】940F题解的更多相关文章

  1. codeforces#536题解

    CodeForces#536 A. Lunar New Year and Cross Counting Description: Lunar New Year is approaching, and ...

  2. Machine Learning CodeForces - 940F(带修改的莫队)

    题解原文地址:https://www.cnblogs.com/lujiaju6555/p/8468709.html 给数组a,有两种操作,1 l r查询[l,r]中每个数出现次数的mex,注意是出现次 ...

  3. codeforces 1093 题解

    12.18 update:补充了 $ F $ 题的题解 A 题: 题目保证一定有解,就可以考虑用 $ 2 $ 和 $ 3 $ 来凑出这个数 $ n $ 如果 $ n $ 是偶数,我们用 $ n / 2 ...

  4. Codeforces 940F Machine Learning (带修改莫队)

    题目链接  Codeforces Round #466 (Div. 2) Problem F 题意  给定一列数和若干个询问,每一次询问要求集合$\left\{c_{0}, c_{1}, c_{2}, ...

  5. codeforces 940F 带修改的莫队

    F. Machine Learning time limit per test 4 seconds memory limit per test 512 megabytes input standard ...

  6. Codeforces Numbers 题解

    这题只需要会10转P进制就行了. PS:答案需要约分,可以直接用c++自带函数__gcd(x,y). 洛谷网址 Codeforces网址 Code(C++): #include<bits/std ...

  7. Codeforces 691E题解 DP+矩阵快速幂

    题面 传送门:http://codeforces.com/problemset/problem/691/E E. Xor-sequences time limit per test3 seconds ...

  8. Codeforces 833B 题解(DP+线段树)

    题面 传送门:http://codeforces.com/problemset/problem/833/B B. The Bakery time limit per test2.5 seconds m ...

  9. Codeforces 840C 题解(DP+组合数学)

    题面 传送门:http://codeforces.com/problemset/problem/840/C C. On the Bench time limit per test2 seconds m ...

随机推荐

  1. python模拟浏览器爬取数据

    爬虫新手大坑:爬取数据的时候一定要设置header伪装成浏览器!!!! 在爬取某财经网站数据时由于没有设置Header信息,直接被封掉了ip 后来设置了Accept.Connection.User-A ...

  2. Google题解

    Kickstart2017 RoundB B.题意: 二维平面上有n个点, 每个点坐标(xi, yi), 权值wi, 问: 在平面上找一点p, 使得 Σwi*max(|X-xi|, |Y-yi|)最小 ...

  3. 【刷题】BZOJ 1537 [POI2005]Aut- The Bus

    Description Byte City 的街道形成了一个标准的棋盘网络 – 他们要么是北南走向要么就是西东走向. 北南走向的路口从 1 到 n编号, 西东走向的路从1 到 m编号. 每个路口用两个 ...

  4. java追加写入txt文件

    整理了下网上的资料,数据追加写入txt文件有三种方式,见下面代码: 方法一: public void method1() { FileWriter fw = null; try { //如果文件存在, ...

  5. 【CF835D】Palindromic characteristics 加强版 解题报告

    [CF835D]Palindromic characteristics 加强版 Description 给你一个串,让你求出\(k\)阶回文子串有多少个.\(k\)从\(1\)到\(n\). \(k\ ...

  6. where EXISTS (子查询)多对多中通过中间表查对方列表

    用户表A,小组表B,小组和用户是多对多关系,中间有个中间表M 已知 小组 id 即teamId ,想知道这个小组中的用户列表信息,可以如下写sql: select * from A a where E ...

  7. 使用 python 将 "\r\n" 转换为 "\n"

    众所周知, Linux 下没有 "\r\n", 而 windows 下文本工具默认打开文件时使用 t 模式, 使得写入一行结尾的换行符为 "\r\n", 这样造 ...

  8. 【Asp.net入门01】动态网站基础知识

    本节将介绍: 网站搭建流程 动态网站相关基础概念 网页的访问原理 使用浏览器访问网站是我们几乎天天在做的事情.以前我们只需要关注网页内容,作为网站开发人员,从现在开始我们要关注更深层次的东西了. 1. ...

  9. python pop()

    pop() 函数用于移除列表中的一个元素(默认最后一个元素),并且返回该元素的值. obj -- 可选参数,要移除列表元素的索引值,不能超过列表总长度,默认为 index=-1,删除最后一个列表值 l ...

  10. python中的文件操作

    文件操作时,有'r','w','a'不同的操作类型,其中'r'只能读文件,seek(),tell()函数定位读的起始地方.'w'会清空文件内容然后写文件,seek(),tell()函数定位写的起始地方 ...