cogs 1330 [HNOI2008]玩具装箱toy
cogs 1330 [HNOI2008]玩具装箱toy
瞎扯,急忙AC的请跳过
感觉数据结构写的太多了有点晕=+
发现还没学斜率优化+-
于是来学一学QwQ
上次这题打了个决策优化直接水过了。。理论O(n^2)
蒯个链接
来推一推~
设f[i]为搞定区间1~i的答案。
推出转移方程:
\]
其中\(s_i\)为\(\sum_{j=1}^{i}C_j\)
这里优化一下:\(s_i\)表示\(i+\sum_{j=1}^{i}C_j\),转移方程简化为
\]
其实没那个必要优化,只是看着爽
然后,\(s_i-1-L\)只和\(i\)有关,\(-s_j\)只和j有关。一次转移中\(i\)是不会变的,\(s_i-1-L\)也是不会变的。
令\(X=s_i-1-L\).
\(f[i]=min(f[j]+(X-s_j)^2)\)
\(\ \ \ \ \ \ =min(f[j]+X^2+s_j^2-2Xs_j)\)
那个\(X^2\)与\(j\)毫无关联,完全可以提出来。
\(\ \ \ \ \ \ =min(f[j]+s_j^2-2Xs_j)+X^2\)
换一个角度:一个\(j\)会转移给不同的\(i\),转移过程中\(f[j]+s_j^2\)不会改变,改变的只有\(-2Xs_j\)
然后,由于\(X\)的不同,转移过去的值也不同。
这个值其实是个一次函数\(y=-2Xs_j+f[j]+s_j^2\).
把\(-2s_j\)看成\(k\),把\(f[j]+s_j^2\)看成\(b\).
画出笛卡尔平面直角坐标系。
(自行脑补,懒得画了)
有一些线是不需要的,因为x取什么值,它都取不到最小,可以删除
然后维护一个单调队列放所有的线
可以发现\(k\)单调递减,\(x\)单调递增,所以很好维护,如果队首答案>队首+1答案直接hd++,懒得证。
怎么维护真的懒得写了。。。下凸壳的左半部分
然后直接上代码吧?
感觉是最详细的一篇博客了
// It is made by XZZ
#include<cstdio>
#include<algorithm>
using namespace std;
#define rep(a,b,c) for(rg int a=b;a<=c;a++)
#define drep(a,b,c) for(rg int a=b;a>=c;a--)
#define erep(a,b) for(rg int a=fir[b];a;a=nxt[a])
#define il inline
#define rg register
#define vd void
#define db double
typedef long long ll;
il int gi(){
rg int x=0,f=1;rg char ch=getchar();
while(ch<'0'||ch>'9')f=ch=='-'?-1:f,ch=getchar();
while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();
return x*f;
}
const int maxn=50001;
ll s[maxn],f[maxn];
struct line{ll k,b;};
struct point{db x,y;};
il point javascript(const line&a,const line&b){
static point ret;
ret.x=(a.b-b.b)/(db)(a.k-b.k);
ret.y=ret.x*a.k+a.b;
return ret;
}
line que[maxn];int hd,tl;
int main(){
int n=gi();ll l=gi();
rep(i,1,n)s[i]=gi()+s[i-1];
rep(i,1,n)s[i]+=i;
f[0]=0;
hd=0,tl=-1;
que[++tl]=(line){0,0};
rep(i,1,n){
static ll x;x=s[i]-l-1;
while((tl^hd)&&que[hd].k*x+que[hd].b>que[hd+1].k*x+que[hd+1].b)++hd;
f[i]=que[hd].k*x+que[hd].b+x*x;
static line ls;ls=(line){-2*s[i],f[i]+s[i]*s[i]};
while((tl^hd)&&javascript(ls,que[tl]).x>javascript(ls,que[tl-1]).x)--tl;
que[++tl]=ls;
}
printf("%lld\n",f[n]);
return 0;
}
cogs 1330 [HNOI2008]玩具装箱toy的更多相关文章
- BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 9812 Solved: 3978[Submit][St ...
- BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP
1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...
- 【bzoj1010】[HNOI2008]玩具装箱toy
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 9281 Solved: 3719[Submit][St ...
- 【BZOJ 1010】 [HNOI2008]玩具装箱toy (斜率优化)
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 9330 Solved: 3739 Descriptio ...
- bzoj 1010 [HNOI2008]玩具装箱toy(DP的斜率优化)
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 7874 Solved: 3047[Submit][St ...
- BZOJ 1010 [HNOI2008]玩具装箱toy
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 7184 Solved: 2724[Submit][St ...
- bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 11893 Solved: 5061[Submit][S ...
- P3195 [HNOI2008]玩具装箱TOY(斜率优化dp)
P3195 [HNOI2008]玩具装箱TOY 设前缀和为$s[i]$ 那么显然可以得出方程 $f[i]=f[j]+(s[i]-s[j]+i-j-L-1)^{2}$ 换下顺序 $f[i]=f[j]+( ...
- [luogu P3195] [HNOI2008]玩具装箱TOY
[luogu P3195] [HNOI2008]玩具装箱TOY 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆, ...
随机推荐
- UITableView中cell里的UITextField不被弹出键盘挡住
UITableView中cell里的UITextField不被弹出键盘挡住 本人视频教程系类 iOS中CALayer的使用 效果如下: 源码: EditCell.h 与 EditCell.m // ...
- 解决华为交换机S5700无法解除ip/Mac绑定的问题
今天同事离职,需要解除他的个人笔记本Mac与ip的绑定 首先进入系统用户视图,然后进入vlanif4,解除151绑定 system-view interface vlanif 4 undo dhcp ...
- Outliner大纲式笔记软件介绍
简介 什么是Outliner An outliner (or outline processor) is a specialized type of word processor used to vi ...
- TeamViewer app案例分析
产品 产品名 TeamViewer远程app 选择原因 远程连接软件是不时之需,当有时私人电脑没有在身边而又需要操作电脑时,远程控制TeamViewer这个软件能帮我们大忙. 调研与评测 1.第一次上 ...
- vue 校验插件 veeValidate使用
1.内置的校验规则 after{target} - 比target要大的一个合法日期,格式(DD/MM/YYYY) alpha - 只包含英文字符 alpha_dash - 可以包含英文.数字.下 ...
- echarts中datazoom相关配置
dataZoom=[ //区域缩放 { id: 'dataZoomX', show:true, //是否显示 组件.如果设置为 false,不会显示,但是数据过滤的功能还存在. backgroundC ...
- docker 导入导出镜像
docker容器导入导出有两种方法: 一种是使用save和load命令 使用例子如下: docker save ubuntu:load>/root/ubuntu.tar docker load& ...
- mac 安装secureCRT
下载 http://www.xue51.com/mac/1632.html 会得到下面的文件: 打开dmg文件: 将SecureCRT移到Applications中,然后点击打开一次(重要): 然后打 ...
- CUDA和OpenGL互操作经典博文赏析和学习
1.使用cuda+opengl图形互操作性实现MPR.原学位论文学习:实时交互的医学图像可视化.在该论文的第5.1.1节. 2.cuda与opengl互操作之PBO 3.cuda与opengl互操作之 ...
- SERVICE问题解决方法
这篇文章主要介绍了Windows服务器下出现ZendOptimizer.MemoryBase@NETWORK SERVICE问题解决方法,需要的朋友可以参考下 日志提示 事件 ID ( 2 )的描述( ...