[HNOI2012]永无乡 线段树合并
[HNOI2012]永无乡
线段树合并练手题,写这篇博客只是为了给我的这篇文章找个板子题。
并查集维护连通性,对于不在同一个连通块内的合并操作每次直接合并两颗线段树,复杂度\(O(n \log n)\)。
//written by newbiechd
#include <cstdio>
#define R register
#define I inline
using namespace std;
const int N = 100003;
int f[N], id[N], rt[N], T;
struct segtree {
int p, q, s;
}e[N << 5];
I int find(int x) {
R int r = x, y;
while (f[r] ^ r)
r = f[r];
while (x ^ r)
y = f[x], f[x] = r, x = y;
return r;
}
void insert(int &k, int l, int r, int x) {
k = ++T, ++e[k].s;
if (l == r)
return ;
R int m = (l + r) >> 1;
if (x <= m)
insert(e[k].p, l, m, x);
else
insert(e[k].q, m + 1, r, x);
}
int merge(int k, int t, int l, int r) {
if (!k)
return t;
if (!t)
return k;
e[k].s += e[t].s;
if (l == r)
return k;
R int m = (l + r) >> 1;
e[k].p = merge(e[k].p, e[t].p, l, m),
e[k].q = merge(e[k].q, e[t].q, m + 1, r);
return k;
}
int query(int k, int l, int r, int x) {
if (l == r)
return l;
R int m = (l + r) >> 1, t = e[e[k].p].s;
if (x <= t)
return query(e[k].p, l, m, x);
else
return query(e[k].q, m + 1, r, x - t);
}
int main() {
R int n, m, Q, i, x, y, z;
R char opt[2];
scanf("%d%d", &n, &m);
for (i = 1; i <= n; ++i)
f[i] = i, scanf("%d", &z), id[z] = i, insert(rt[i], 1, n, z);
for (i = 1; i <= m; ++i)
scanf("%d%d", &x, &y), x = find(x), y = find(y), f[y] = x,
rt[x] = merge(rt[x], rt[y], 1, n);
scanf("%d", &Q);
for (i = 1; i <= Q; ++i) {
scanf("%s%d%d", opt, &x, &y), x = find(x);
if (opt[0] == 'B') {
y = find(y);
if (y ^ x)
f[y] = x, merge(rt[x], rt[y], 1, n);
}
else
if (y > e[rt[x]].s)
printf("-1\n");
else
printf("%d\n", id[query(rt[x], 1, n, y)]);
}
return 0;
}
[HNOI2012]永无乡 线段树合并的更多相关文章
- bzoj 2733 : [HNOI2012]永无乡 (线段树合并)
Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以 ...
- BZOJ2733[HNOI2012]永无乡——线段树合并+并查集+启发式合并
题目描述 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以从一个岛 到达 ...
- bzoj2733: [HNOI2012]永无乡 线段树合并
永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以从一个岛 到达另一个岛. ...
- 洛谷P3224 [HNOI2012]永无乡(线段树合并+并查集)
题目描述 永无乡包含 nnn 座岛,编号从 111 到 nnn ,每座岛都有自己的独一无二的重要度,按照重要度可以将这 nnn 座岛排名,名次用 111 到 nnn 来表示.某些岛之间由巨大的桥连接, ...
- 【bzoj2733】[HNOI2012]永无乡 线段树合并
Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以 ...
- 2733: [HNOI2012]永无乡 线段树合并
题目: https://www.lydsy.com/JudgeOnline/problem.php?id=2733 题解: 建n棵动态开点的权值线段树,然后边用并查集维护连通性,边合并线段树维护第k重 ...
- Bzoj 2733: [HNOI2012]永无乡(线段树+启发式合并)
2733: [HNOI2012]永无乡 Time Limit: 10 Sec Memory Limit: 128 MB Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己 ...
- bzoj 2733: [HNOI2012]永无乡 -- 线段树
2733: [HNOI2012]永无乡 Time Limit: 10 Sec Memory Limit: 128 MB Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自 ...
- 【BZOJ2733】【HNOI2012】永无乡 - 线段树合并
题意: Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通 ...
随机推荐
- Flask 参数简介
我们都知道学习了Flask的时候它里面的参数是有很多种的参数 都是需要相互进行调用传递的 今天就简要分析一些常见的参数 首先导入Flask之后看 源码 from flask import Flas ...
- swift版的StringAttribute
swift版的StringAttribute 效果 源码 https://github.com/YouXianMing/Swift-StringAttribute // // StringAttrib ...
- Linux 安装 pycharm
1.Windows系统下载http://www.jetbrains.com/pycharm/download/#section=linux2.解压到挂载文件夹 mount -t cifs -o use ...
- Linux系统锁定关键文件
锁定系统关键文件 1.密码.账号文件 chattr +i /etc/passwd /etc/group /etc/shadow /etc/gshadow /etc/inittab 加锁:chattr ...
- Linux which/whereis/locate命令详解
which 查看可执行文件的位置,从全局环境变量PATH里面查找对应的路径,默认是找 bash内所规范的目录 whereis 查看文件的位置,配合参数-b,用于程序名的搜索,从linux数据库查找. ...
- 浅谈jodaTime 的使用
第一步:引入依赖: 1 <dependency> 2 <groupId>joda-time</groupId> 3 <artifactId>joda-t ...
- Centos7 教程收集ing
CentOS7 常用命令集合 https://blog.csdn.net/o0darknessyy0o/article/details/52072054#t1 1.centOS7下实践查询版本/CPU ...
- mysql5.7.22的安装与配置(适用mysql5.7.20至mysql5.7.22版本)
一.解压Mysql5.7.20安装包,刚解压是没有 data 这个文件夹的 二.配置mysql环境变量,创建MYSQL_HOME,然后在Path上添加%MYSQL_HOME%\bin; 三.配置m ...
- Oracle 数据库创建(图形界面操作)
Oracle 创建数据库图文分解: 1. 选择所有程序->Oracle-OraDb11g_home1->Configuration and Migration Tools -> Da ...
- javascript 的MD5代码备份,跟java互通
var MD5 = function (string) { function RotateLeft(lValue, iShiftBits) { ...