HBase学习之路 (十)HBase表的设计原则
建表高级属性
下面几个 shell 命令在 hbase 操作中可以起到很大的作用,且主要体现在建表的过程中,看 下面几个 create 属性
1、 BLOOMFILTER
默认是 NONE 是否使用布隆过虑及使用何种方式,布隆过滤可以每列族单独启用 使用 HColumnDescriptor.setBloomFilterType(NONE | ROW | ROWCOL) 对列族单独启用布隆
Default = ROW 对行进行布隆过滤
对 ROW,行键的哈希在每次插入行时将被添加到布隆
对 ROWCOL,行键 + 列族 + 列族修饰的哈希将在每次插入行时添加到布隆
使用方法: create 'table',{BLOOMFILTER =>'ROW'}
作用:用布隆过滤可以节省读磁盘过程,可以有助于降低读取延迟
2、 VERSIONS
默认是 1 这个参数的意思是数据保留 1 个 版本,如果我们认为我们的数据没有这么大 的必要保留这么多,随时都在更新,而老版本的数据对我们毫无价值,那将此参数设为 1 能 节约 2/3 的空间
使用方法: create 'table',{VERSIONS=>'2'}
附:MIN_VERSIONS => '0'是说在 compact 操作执行之后,至少要保留的版本
3、 COMPRESSION
默认值是 NONE 即不使用压缩,这个参数意思是该列族是否采用压缩,采用什么压缩算 法,方法: create 'table',{NAME=>'info',COMPRESSION=>'SNAPPY'} ,建议采用 SNAPPY 压缩算 法 ,HBase 中,在 Snappy 发布之前(Google 2011 年对外发布 Snappy),采用的 LZO 算法,目标是达到尽可能快的压缩和解压速度,同时减少对 CPU 的消耗;
在 Snappy 发布之后,建议采用 Snappy 算法(参考《HBase: The Definitive Guide》),具体 可以根据实际情况对 LZO 和 Snappy 做过更详细的对比测试后再做选择。
如果建表之初没有压缩,后来想要加入压缩算法,可以通过 alter 修改 schema
4、 TTL
默认是 2147483647 即:Integer.MAX_VALUE 值大概是 68 年,这个参数是说明该列族数据的存活时间,单位是 s
这个参数可以根据具体的需求对数据设定存活时间,超过存过时间的数据将在表中不在 显示,待下次 major compact 的时候再彻底删除数据
注意的是 TTL 设定之后 MIN_VERSIONS=>'0' 这样设置之后,TTL 时间戳过期后,将全部 彻底删除该 family 下所有的数据,如果 MIN_VERSIONS 不等于 0 那将保留最新的 MIN_VERSIONS 个版本的数据,其它的全部删除,比如 MIN_VERSIONS=>'1' 届时将保留一个 最新版本的数据,其它版本的数据将不再保存。
5、 alter
使用方法:
如 修改压缩算法
disable 'table' alter 'table',{NAME=>'info',COMPRESSION=>'snappy'} enable 'table'
但是需要执行 major_compact 'table' 命令之后 才会做实际的操作。
6、 describe/desc
这个命令查看了 create table 的各项参数或者是默认值。
使用方式:describe 'user_info'
7、 disable_all/enable_all
disable_all 'toplist.*' disable_all 支持正则表达式,并列出当前匹配的表的如下:
toplist_a_total_1001
toplist_a_total_1002
toplist_a_total_1008
toplist_a_total_1009
toplist_a_total_1019
toplist_a_total_1035
...
Disable the above tables (y/n)? 并给出确认提示
8、 drop_all
这个命令和 disable_all 的使用方式是一样的
9、 hbase 预分区
默认情况下,在创建 HBase 表的时候会自动创建一个 region 分区,当导入数据的时候, 所有的 HBase 客户端都向这一个 region 写数据,直到这个 region 足够大了才进行切分。一 种可以加快批量写入速度的方法是通过预先创建一些空的 regions,这样当数据写入 HBase 时,会按照 region 分区情况,在集群内做数据的负载均衡。
命令方式:
# create table with specific split points
hbase>create 'table1','f1',SPLITS => ['\x10\x00', '\x20\x00', '\x30\x00', '\x40\x00']
# create table with four regions based on random bytes keys
hbase>create 'table2','f1', { NUMREGIONS => , SPLITALGO => 'UniformSplit' }
# create table with five regions based on hex keys
hbase>create 'table3','f1', { NUMREGIONS => , SPLITALGO => 'HexStringSplit' }
也可以使用 api 的方式:
hbase org.apache.hadoop.hbase.util.RegionSplitter test_table HexStringSplit -c -f info hbase org.apache.hadoop.hbase.util.RegionSplitter splitTable HexStringSplit -c -f info
参数:
test_table 是表名
HexStringSplit 是split 方式
-c 是分 10 个 region
-f 是 family
可在 UI 上查看结果,如图:
这样就可以将表预先分为 15 个区,减少数据达到 storefile 大小的时候自动分区的时间 消耗,并且还有以一个优势,就是合理设计 rowkey 能让各个 region 的并发请求平均分配(趋 于均匀) 使 IO 效率达到最高,但是预分区需要将 filesize 设置一个较大的值,设置哪个参数 呢 hbase.hregion.max.filesize 这个值默认是 10G 也就是说单个 region 默认大小是 10G
这个参数的默认值在 0.90 到 0.92 到 0.94.3 各版本的变化:256M--1G--10G
但是如果 MapReduce Input 类型为 TableInputFormat 使用 hbase 作为输入的时候,就要注意 了,每个 region 一个 map,如果数据小于 10G 那只会启用一个 map 造成很大的资源浪费, 这时候可以考虑适当调小该参数的值,或者采用预分配 region 的方式,并将检测如果达到 这个值,再手动分配 region。
表设计
1、列簇设计
追求的原则是:在合理范围内能尽量少的减少列簇就尽量减少列簇。
最优设计是:将所有相关性很强的 key-value 都放在同一个列簇下,这样既能做到查询效率 最高,也能保持尽可能少的访问不同的磁盘文件。
以用户信息为例,可以将必须的基本信息存放在一个列族,而一些附加的额外信息可以放在 另一列族。
2、RowKey 设计
HBase 中,表会被划分为 1...n 个 Region,被托管在 RegionServer 中。Region 二个重要的 属性:StartKey 与 EndKey 表示这个 Region 维护的 rowKey 范围,当我们要读/写数据时,如 果 rowKey 落在某个 start-end key 范围内,那么就会定位到目标 region 并且读/写到相关的数 据
那怎么快速精准的定位到我们想要操作的数据,就在于我们的 rowkey 的设计了
Rowkey 设计三原则
1、 rowkey 长度原则
Rowkey 是一个二进制码流,Rowkey 的长度被很多开发者建议说设计在 10~100 个字节,不 过建议是越短越好,不要超过 16 个字节。
原因如下:
1、数据的持久化文件 HFile 中是按照 KeyValue 存储的,如果 Rowkey 过长比如 100 个字 节,1000 万列数据光 Rowkey 就要占用 100*1000 万=10 亿个字节,将近 1G 数据,这会极大 影响 HFile 的存储效率;
2、MemStore 将缓存部分数据到内存,如果 Rowkey 字段过长内存的有效利用率会降低, 系统将无法缓存更多的数据,这会降低检索效率。因此 Rowkey 的字节长度越短越好。
3、目前操作系统是都是 64 位系统,内存 8 字节对齐。控制在 16 个字节,8 字节的整数 倍利用操作系统的最佳特性。
2、rowkey 散列原则
如果 Rowkey 是按时间戳的方式递增,不要将时间放在二进制码的前面,建议将 Rowkey 的高位作为散列字段,由程序循环生成,低位放时间字段,这样将提高数据均衡分布在每个 Regionserver 实现负载均衡的几率。如果没有散列字段,首字段直接是时间信息将产生所有 新数据都在一个 RegionServer 上堆积的热点现象,这样在做数据检索的时候负载将会集中 在个别 RegionServer,降低查询效率。
3、 rowkey 唯一原则
必须在设计上保证其唯一性。rowkey 是按照字典顺序排序存储的,因此,设计 rowkey 的时候,要充分利用这个排序的特点,将经常读取的数据存储到一块,将最近可能会被访问 的数据放到一块。
数据热点
HBase 中的行是按照 rowkey 的字典顺序排序的,这种设计优化了 scan 操作,可以将相 关的行以及会被一起读取的行存取在临近位置,便于 scan。然而糟糕的 rowkey 设计是热点 的源头。 热点发生在大量的 client 直接访问集群的一个或极少数个节点(访问可能是读, 写或者其他操作)。大量访问会使热点 region 所在的单个机器超出自身承受能力,引起性能 下降甚至 region 不可用,这也会影响同一个 RegionServer 上的其他 region,由于主机无法服 务其他 region 的请求。 设计良好的数据访问模式以使集群被充分,均衡的利用。 为了避免写热点,设计 rowkey 使得不同行在同一个 region,但是在更多数据情况下,数据 应该被写入集群的多个 region,而不是一个。
防止数据热点的有效措施
加盐
这里所说的加盐不是密码学中的加盐,而是在 rowkey 的前面增加随机数,具体就是给 rowkey 分配一个随机前缀以使得它和之前的 rowkey 的开头不同。分配的前缀种类数量应该 和你想使用数据分散到不同的 region 的数量一致。加盐之后的 rowkey 就会根据随机生成的 前缀分散到各个 region 上,以避免热点。
哈希
哈希会使同一行永远用一个前缀加盐。哈希也可以使负载分散到整个集群,但是读却是 可以预测的。使用确定的哈希可以让客户端重构完整的 rowkey,可以使用 get 操作准确获取 某一个行数据
反转
第三种防止热点的方法是反转固定长度或者数字格式的 rowkey。这样可以使得 rowkey 中经常改变的部分(最没有意义的部分)放在前面。这样可以有效的随机 rowkey,但是牺 牲了 rowkey 的有序性。
反转 rowkey 的例子以手机号为 rowkey,可以将手机号反转后的字符串作为 rowkey,这 样的就避免了以手机号那样比较固定开头导致热点问题
时间戳反转
一个常见的数据处理问题是快速获取数据的最近版本,使用反转的时间戳作为 rowkey 的一部分对这个问题十分有用,可以用 Long.Max_Value - timestamp 追加到 key 的末尾,例 如 [key][reverse_timestamp] , [key] 的最新值可以通过 scan [key]获得[key]的第一条记录,因 为 HBase 中 rowkey 是有序的,第一条记录是最后录入的数据。比如需要保存一个用户的操 作记录,按照操作时间倒序排序,在设计 rowkey 的时候,可以这样设计 [userId 反转][Long.Max_Value - timestamp],在查询用户的所有操作记录数据的时候,直接指 定 反 转 后 的 userId , startRow 是 [userId 反 转 ][000000000000],stopRow 是 [userId 反 转][Long.Max_Value - timestamp]
如果需要查询某段时间的操作记录,startRow 是[user 反转][Long.Max_Value - 起始时间], stopRow 是[userId 反转][Long.Max_Value - 结束时间]
HBase学习之路 (十)HBase表的设计原则的更多相关文章
- HBase学习之路 (一)HBase基础介绍
产生背景 自 1970 年以来,关系数据库用于数据存储和维护有关问题的解决方案.大数据的出现后, 好多公司实现处理大数据并从中受益,并开始选择像 Hadoop 的解决方案.Hadoop 使用分 布式文 ...
- HBase 学习之路(八)——HBase协处理器
一.简述 在使用HBase时,如果你的数据量达到了数十亿行或数百万列,此时能否在查询中返回大量数据将受制于网络的带宽,即便网络状况允许,但是客户端的计算处理也未必能够满足要求.在这种情况下,协处理器( ...
- HBase 学习之路(一)—— HBase简介
一.Hadoop的局限 HBase是一个构建在Hadoop文件系统之上的面向列的数据库管理系统. 要想明白为什么产生HBase,就需要先了解一下Hadoop存在的限制?Hadoop可以通过HDFS来存 ...
- 大数据学习之路之HBASE
Hadoop之HBASE 一.HBASE简介 HBase是一个开源的.分布式的,多版本的,面向列的,半结构化的NoSql数据库,提供高性能的随机读写结构化数据的能力.它可以直接使用本地文件系统,也可以 ...
- HBase学习之路 (十一)HBase的协过滤器
协处理器—Coprocessor 1. 起源 Hbase 作为列族数据库最经常被人诟病的特性包括:无法轻易建立“二级索引”,难以执 行求和.计数.排序等操作.比如,在旧版本的(<0.92)Hba ...
- HBase学习之路 (七)HBase 原理
系统架构 错误图解 这张图是有一个错误点:应该是每一个 RegionServer 就只有一个 HLog,而不是一个 Region 有一个 HLog. 正确图解 从HBase的架构图上可以看出,HBas ...
- HBase学习之路 (三)HBase集群Shell操作
进入HBase命令行 在你安装的随意台服务器节点上,执行命令:hbase shell,会进入到你的 hbase shell 客 户端 [hadoop@hadoop1 ~]$ hbase shell S ...
- HBase 学习之路(九)——HBase容灾与备份
一.前言 本文主要介绍Hbase常用的三种简单的容灾备份方案,即CopyTable.Export/Import.Snapshot.分别介绍如下: 二.CopyTable 2.1 简介 CopyTabl ...
- HBase 学习之路(六)——HBase Java API 的基本使用
一.简述 截至到目前(2019.04),HBase 有两个主要的版本,分别是1.x 和 2.x ,两个版本的Java API有所不同,1.x 中某些方法在2.x中被标识为@deprecated过时.所 ...
- HBase 学习之路(二)—— HBase系统架构及数据结构
一.基本概念 一个典型的Hbase Table 表如下: 1.1 Row Key (行键) Row Key是用来检索记录的主键.想要访问HBase Table中的数据,只有以下三种方式: 通过指定的R ...
随机推荐
- 深入理解java虚拟机---4虚拟机类加载机制
本文来源于翁舒航的博客,点击即可跳转原文观看!!!(被转载或者拷贝走的内容可能缺失图片.视频等原文的内容) 若网站将链接屏蔽,可直接拷贝原文链接到地址栏跳转观看,原文链接:https://www.cn ...
- QT5.4.2静态编译(包含QtWebKit),在VS2013上创建项目,并成功运行
Qt项目发布的exe程序,默认是以动态链接形式的,这样发布后的程序会附带好多Qt自己的dll库,这样文件数量不仅多,而且移植到其他电脑上的时候,还可能会遇到,提示缺其他库等各种运行不起 ...
- 谷歌浏览器network请求时间(stalled,DNS Lookup,Waiting)分析以及解决方案
network工具功能强大,能够让我看到网页加载的信息,比如加载时间,和先后顺序,是否是并行加载,还是堵塞加载. 默认情况下有八列: (1).Name:表示加载的文件名. (2).Method:表示请 ...
- tr,td高度不生效
功能:表格内容较长,但是页面高度有限,超出显示滚动条 阻碍:给tr或者td加高度都不生效,不显示滚动条 解决方案:td中加div,设置高度和内容溢出时的样式 <table border='1' ...
- Vue.js 的一些小技巧
给 props 属性设置多个类型 这个技巧在开发组件的时候用的较多,为了更大的容错性考虑,同时代码也更加人性化: export default { props: { width: { type: [S ...
- JavaScript standard 代码规范的全文
这是 JavaScript standard 代码规范的全文. 掌握本规范的最好方法是安装并在自己的代码中使用它. 细则 使用两个空格进行缩进. eslint: indent function hel ...
- AIX修改时区,配置NTP服务
AIX修改时区 smitty --> System Environments -->Change/Show Data and Time -->Change Time Zone Usi ...
- UnicodeEncodeError: 'ascii' codec can't encode characters in position 2-5: ordin al not in range(128)——解决方案备注
在vim中使用ycm插件时,偶尔会出现: “UnicodeEncodeError: 'ascii' codec can't encode characters in position 2-5: ord ...
- jquery刷新页面的实现代码(局部及全页面刷新)
局部刷新: 这个方法就多了去了,常见的有以下几种: $.get方法,$.post方法,$.getJson方法,$.ajax方法如下 前两种使用方法基本上一样 下面介绍全页面刷新方法:有时候可能会用到 ...
- 转 Js窗体window大小设置
网页可见区域宽:document.body.clientWidth 网页可见区域高:document.body.clientHeight 网页可见区域宽:document.body.offsetW ...