BZOJ1053:反素数(数学)
对于任意的正整数\(x\),记其约数的个数为\(g(x)\)。现在定义反素数:对于\(0<i<x\),都有\(g(x)>g(i)\),那么就称x为反素数。
现在给定一个数N,满足\(1\leq N\leq 2*10^9\),求出不超过\(N\)的最大的反素数。
由反素数的定义我们知道,若\(x\)为反素数,那么\(x\)肯定是具有相同约数个数的数中最小的那一个;并且x的约数个数应该是最多的。
很明显直接枚举肯定要炸。观察到\(N\)不会超过\(2*10^9\),那么就可以知道:\(1\)~\(N\)中任何数质因子都不超过10个,并且所有质因子的指数总和不超过30。
然后。。反素数还有一个关键的性质,就是将它质因数分解过后,其指数是单调不增的。证明的话可以考虑交换两项的指数来考虑,对于一个\(p^{k_1}\),假设存在一个\(q^{k_2}\)并且满足\(p<q,k_1<k_2\),那么交换\(k1,k2\),会得到一个更小的且约数相同的数。
那么之后我们可以直接利用这些性质爆搜就好了。
代码如下:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <vector>
using namespace std;
typedef long long ll;
const int N = 105;
ll n;
ll prime[N] = {1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29};
ll c[N];
ll qp(ll a, ll b) {
ll ans = 1 ;
while (b) {
if(b & 1)
ans = ans * a;
a = a * a;
b >>= 1;
}
return ans ;
}
ll ans, num;
void dfs(int k, int p, ll mul) {
if(k == 11) {
ll tmp = 1;
for(int i = 1; i <= 10; i++) {
tmp *= (c[i] + 1);
}
if(tmp > num) {
num = tmp;
ans = mul;
} else if(tmp == num && ans > mul) {
ans = mul;
}
return ;
}
ll cnt = 0;
for(; cnt <= p; cnt++) {
if(qp(prime[k], cnt)*mul > n) {
if(cnt > 0)
cnt--;
break ;
}
}
cnt = min(cnt , (ll)p);
for(int i = cnt; i >= 0; i--) {
c[k] = i;
dfs(k + 1, cnt, mul * qp(prime[k], i));
}
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cin >> n;
dfs(1, 31, 1);
cout << ans;
return 0;
}
BZOJ1053:反素数(数学)的更多相关文章
- BZOJ1053 反素数
题目大意 对于任何正整数x,其约数的个数记作g(x).如果某个正整数x满足对任意的0<i<x,都有g(x)>g(i) ,则称x为反质数.现在给定一个数N,求出不超过N的最大的反质数. ...
- 【BZOJ1053】 反素数ant
BZOJ1053 反素数ant 我们先考虑唯一分解定理求出约数个数: \(x=a_1^{p_1}a_2^{p_2}a_3^{p_3}...a_k^{p_k}\) 然后\(num=\Pi_{i=1}^k ...
- [BZOJ1053][SDOI2005]反素数ant 数学
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1053 假设这个最大的反素数为$x$,那么$1<p<x$中数的因子数都没有$x$ ...
- 【bzoj1053】反素数
[bzoj1053]反素数 题意 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例 ...
- BZOJ1053 [HAOI2007]反素数ant 数论
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 传送门 - BZOJ1053 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正 ...
- 【BZOJ1053】[HAOI2007]反素数(搜索)
[BZOJ1053][HAOI2007]反素数(搜索) 题面 BZOJ 洛谷 题解 大力猜一下用不了几个质因子,那么随便爆搜一下就好了. #include<iostream> #inclu ...
- 【BZOJ1053】[HAOI2007]反素数
[BZOJ1053][HAOI2007]反素数 题面 bzoj 洛谷 题解 可以从反素数的定义看出小于等于\(x\)的最大反素数一定是约数个数最多且最小的那个 可以枚举所有的质因数来求反素数,但还是跑 ...
- 【BZOJ1053】[HAOI2007]反素数ant 暴力
[BZOJ1053][HAOI2007]反素数ant Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) ...
- bzoj1053: [HAOI2007]反素数ant
51nod有一道类似的题...我至今仍然不会写暴搜!!! #include<cstdio> #include<cstring> #include<iostream> ...
随机推荐
- virtual box下安装ubuntu经验
1. 哪怕下载的是ubuntu64位版本,也在vitualbox下选择ubuntu而不要选择ubuntu(64bit) 2. 安装VBoxGuestAdditional.iso:下载和vbox版本相匹 ...
- Spring Bean注册解析(二)
在上文Spring Bean注册解析(一)中,我们讲解了Spring在注册Bean之前进行了哪些前期工作,以及Spring是如何存储注册的Bean的,并且详细介绍了Spring是如何解析 ...
- Alpha发布PSP Daily评价总结报告
Alpha发布PSP Daily评价总结报告 优点: 1.用户人群较为明确,定位较为准确. 2.亮点:暂停任务时是无法结束当前任务的. 3.说明书写的详细.语言流畅.能实现的功能都体现出来. 4.下拉 ...
- P4论文粗读笔记(一)
一 文章名称:SNAP: Stateful Network-Wide Abstractions for Packet Processing 数据包处理的带状态网络概念 发表时间:2016 期刊来源:S ...
- Leetcode题库——13.罗马数字转整数
@author: ZZQ @software: PyCharm @file: Luoma2Int.py @time: 2018/9/16 17:06 要求: 罗马数字转数字 字符 数值 I 1 V 5 ...
- 第三次作业---excel导入数据库及显示
好吧首先承认这次作业失败了,而且我并不知道原因.另外,我也没有采用PowerDesigner 设计所需要的数据库,代码就用了全部的时间.感觉自己就像一个刚学会爬着走路的小孩去参加一百一十米跨栏,能不能 ...
- “吃神么,买神么”的第一个Sprint计划(第三天)
“吃神么,买神么”项目Sprint计划 ——5.23 星期六(第三天)立会内容与进度 摘要:今天的立会主要是报告进度以及遇到的困难. 进度:logo正在进行中,其他基本没什么问题.都确定要做出来的大 ...
- 【CS231N】7、卷积神经网络
一.疑问 1. assignments2 在代码文件FullyConnectedNets.ipynd 中,有代码如下: # Test the affine_forward function num_i ...
- iis托管管道模式-学习
文章;IIS 7 托管管道模式 经典模式(Classic) 集成模式(Integrated) 分析与理解 我们可以通过应用程序池设置管道模式,这项功能对IIS管理员尤其有用,因为这样既可以令一台服务器 ...
- diliucizuoye
NABCD N(Need 需求) 互联网的高速发展,造就了二十一世纪这个追求高品质.高体验的信息时代,随其发展改变的是信息记录与分享方式,从传统的面对面交流.手机通话.写日记本,到现如今的社交平台.信 ...