一下是蒟蒻的个人想法,并不很严谨,仅供参考,如有缺误,敬请提出

参考资料:

陈立杰原版课件

litble

某大神

某大神

其实课件讲得最详实了

有限状态自动机##

我们要学后缀自动机,我们先来了解一下自动机到底是什么。【虽说以前也学过AC自动机,只是当一个名字罢了】

有限自动机的功能是识别字符串,作用各不相同

如果自动机A能识别串s,那么A(s) = true

自动机有一个初始状态,从初始状态出发能到达多个状态。到达终止状态表示字符串识别

后缀自动机SAM##

我们略去建机原理的分析和建机过程,具体原理建议看陈立杰神牛的课件,建机过程为了简化可以看litble的

其实是我弱写不出来QAQ

一些性质:

①后缀自动机能识别对应串的所有后缀,且状态数最少【最简状态】

②从初始状态出发,每一种走法唯一对应一种子串

【也就是说一个节点往后有几种走法,往后就有几种子串】

③一个状态代表一个子串集合,该集合中的子串有着相同的右端点,且长度连续

④一个状态的pre指针指向的状态与该状态也有着相同的右端点,且长度最大值 = 该状态最小长度 - 1

由此可见pre是当前串的后缀

⑤一个状态表示子串的最大长度Max(u) = step[u],最小长度Min(u) = step[pre[u]] + 1【由④得】

⑥如果不同位置的相同子串需重复计算,则一个点表示子串的数量 = 其parent树中的叶子个数

⑦只有叶子节点表示的子串是不重复的

⑧后缀自动机是拓扑图,pre指针形成一棵树

⑨插入时第一个建的点都是主链上的点

⑩求点的拓扑序可以用step进行基数排序

一些作用:【大多与子串相关】

①求第K小子串

②求LCP【最长公共子串】

③求子串出现次数,最大次数等

④求某个位置为结尾最大匹配长度

⑤求不同子串数

还有很多。。。。。

蒟蒻见过的差不多这些

贴个模板

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u]; k; k = ed[k].nxt)
using namespace std;
const int maxn = 2000005,maxm = 100005,INF = 1000000000;
inline int RD(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 1) + (out << 3) + c - '0'; c = getchar();}
return out * flag;
}
int ch[maxn][26],pre[maxn],step[maxn],n,cnt,last;
int b[maxn],sz[maxn],a[maxn];
LL ans = 0;
char s[maxn];
void ins(int u){
int p = last,np = ++cnt;
last = np; step[np] = step[p] + 1;
while (p && !ch[p][u]) ch[p][u] = np,p = pre[p];
if (!p) pre[np] = 1;
else {
int q = ch[p][u];
if (step[q] == step[p] + 1) pre[np] = q;
else {
int nq = ++cnt; step[nq] = step[p] + 1;
for (int i = 0; i < 26; i++) ch[nq][i] = ch[q][i];
pre[nq] = pre[q]; pre[q] = pre[np] = nq;
while (ch[p][u] == q) ch[p][u] = nq,p = pre[p];
}
}
sz[np] = 1;
}
void solve(){
REP(i,cnt) b[step[i]]++;
REP(i,cnt) b[i] += b[i - 1];
REP(i,cnt) a[b[step[i]]--] = i;
for (int i = cnt; i; i--){
sz[pre[a[i]]] += sz[a[i]];
if (sz[a[i]] > 1) ans = max(ans,1ll * step[a[i]] * sz[a[i]]);
}
}
int main(){
scanf("%s",s + 1);
cnt = last = 1; n = strlen(s + 1);
for (int i = 1; i <= n; i++) ins(s[i] - 'a');
solve();
printf("%lld",ans);
return 0;
}

浅谈后缀自动机SAM的更多相关文章

  1. [转]后缀自动机(SAM)

    原文地址:http://blog.sina.com.cn/s/blog_8fcd775901019mi4.html 感觉自己看这个终于觉得能看懂了!也能感受到后缀自动机究竟是一种怎样进行的数据结构了. ...

  2. 【算法】后缀自动机(SAM) 初探

    [自动机] 有限状态自动机的功能是识别字符串,自动机A能识别字符串S,就记为$A(S)$=true,否则$A(S)$=false. 自动机由$alpha$(字符集),$state$(状态集合),$in ...

  3. SPOJ 1811. Longest Common Substring (LCS,两个字符串的最长公共子串, 后缀自动机SAM)

    1811. Longest Common Substring Problem code: LCS A string is finite sequence of characters over a no ...

  4. 后缀自动机SAM学习笔记

    前言(2019.1.6) 已经是二周目了呢... 之前还是有一些东西没有理解到位 重新写一下吧 后缀自动机的一些基本概念 参考资料和例子 from hihocoder DZYO神仙翻译的神仙论文 简而 ...

  5. 后缀自动机(SAM)奶妈式教程

    后缀自动机(SAM) 为了方便,我们做出如下约定: "后缀自动机" (Suffix Automaton) 在后文中简称为 SAM . 记 \(|S|\) 为字符串 \(S\) 的长 ...

  6. 【算法】后缀自动机(SAM) 例题

    算法介绍见:http://www.cnblogs.com/Sakits/p/8232402.html 广义SAM资料:https://www.cnblogs.com/phile/p/4511571.h ...

  7. 后缀自动机(SAM)速成手册!

    正好写这个博客和我的某个别的需求重合了...我就来讲一讲SAM啦qwq 后缀自动机,也就是SAM,是一种极其有用的处理字符串的数据结构,可以用于处理几乎任何有关于子串的问题,但以学起来异常困难著称(在 ...

  8. 【算法专题】后缀自动机SAM

    后缀自动机是用于识别子串的自动机. 学习推荐:陈立杰讲稿,本文记录重点部分和感性理解(论文语言比较严格). 刷题推荐:[后缀自动机初探],题目都来自BZOJ. [Right集合] 后缀自动机真正优于后 ...

  9. 【文文殿下】对后缀自动机(SAM)的理解

    后缀自动机,是一种数据结构,是由状态和转移关系构成的.它虽然叫做后缀自动机,可是他却与后缀并没有什么太大的联系. 后缀自动机的每一种状态都是原串的一些子串的集合,每个子串只唯一存在于某个状态中,对每一 ...

随机推荐

  1. 浏览器 DNS缓存与DNS prefetch (DNS预解析)

    浏览器 DNS缓存 浏览器DNS缓存的时间跟DNS服务器返回的TTL值无关. 注:TTL(Time-To-Live),就是一条域名解析记录在DNS服务器中的存留时间. 浏览器在获取网站域名的实际IP地 ...

  2. js当中mouseover和mouseout多次触发(非冒泡)

    JS当中,mouseover和mouseout多次触发事件,不光是冒泡会产生,就是不冒泡,在一定条件下 ,也会产生多次触发事件: 例如下面的结构的情况下,我在class="ceng_up f ...

  3. PHP implode() 函数

    转自:http://www.w3school.com.cn/php/func_string_implode.asp 语法 implode(separator,array) 参数 描述 separato ...

  4. Redux百行代码千行文档

    接触Redux不过短短半年,从开始看官方文档的一头雾水,到渐渐已经理解了Redux到底是在做什么,但是绝大数场景下Redux都是配合React一同使用的,因而会引入了React-Redux库,但是正是 ...

  5. linux下mysql的权限设计总结

    1,进入mysql,终端中输入 mysql -u 用户名 -p   .enter键后,提示输入密码. 2,执行grant all privileges on xxxdb.* to usertest@& ...

  6. 【mysql】 数据库字符集和排序规则

    库的字符集影响表和字段的字符集 数据库字符集 >表的字符集 > 字段的字符集 (从前往后优先级由低到高,从左往右继承,如果表没设置字符集,继承数据库的,如果字段没设置,继承表的) 数据库的 ...

  7. mysql不能登陆

    前些天还正常运行的mysql,不知怎么就不能登陆了.错误提示为 :ERROR 2003 (HY000): Can't connect to MySQL server on 'localhost' (1 ...

  8. TCP/IP网络编程之优于select的epoll(二)

    基于epoll的回声服务端 在TCP/IP网络编程之优于select的epoll(一)这一章中,我们介绍了epoll的相关函数,接下来给出基于epoll的回声服务端示例. echo_epollserv ...

  9. python上数据存储 .h5格式或者h5py

    最近在做城市计算的项目,数据文件是以.h5的格式存储的,总结下其用法和特点 来自百度百科的简介: HDF(Hierarchical Data Format),可以存储不同类型的图像和数码数据的文件格式 ...

  10. HTML5/CSS3速成教程

    http://www.w3cfuns.com/thread-5592317-1-1.html