Housewife Wind
Time Limit: 4000MS   Memory Limit: 65536K
Total Submissions: 11419   Accepted: 3140

Description

After their royal wedding, Jiajia and Wind hid away in XX Village, to enjoy their ordinary happy life. People in XX Village lived in beautiful huts. There are some pairs of huts connected by bidirectional roads. We say that huts in the same pair directly connected. XX Village is so special that we can reach any other huts starting from an arbitrary hut. If each road cannot be walked along twice, then the route between every pair is unique.

Since Jiajia earned enough money, Wind became a housewife. Their children loved to go to other kids, then make a simple call to Wind: 'Mummy, take me home!'

At different times, the time needed to walk along a road may be different. For example, Wind takes 5 minutes on a road normally, but may take 10 minutes if there is a lovely little dog to play with, or take 3 minutes if there is some unknown strange smell surrounding the road.

Wind loves her children, so she would like to tell her children the exact time she will spend on the roads. Can you help her?

Input

The first line contains three integers n, q, s. There are n huts in XX Village, q messages to process, and Wind is currently in hut s. n < 100001 , q < 100001.

The following n-1 lines each contains three integers a, b and w. That means there is a road directly connecting hut a and b, time required is w. 1<=w<= 10000.

The following q lines each is one of the following two types:

Message A: 0 u 
A kid in hut u calls Wind. She should go to hut u from her current position. 
Message B: 1 i w 
The time required for i-th road is changed to w. Note that the time change will not happen when Wind is on her way. The changed can only happen when Wind is staying somewhere, waiting to take the next kid.

Output

For each message A, print an integer X, the time required to take the next child.

Sample Input

3 3 1
1 2 1
2 3 2
0 2
1 2 3
0 3

Sample Output

1
3

题目链接:POJ 2763

给定一棵树,两种操作,一种是询问当前点到v点的最短距离,并且输出答案之后当前点就变成v点了;第二种是把某一条边的长度变为w。

先考虑只有询问的情况下怎么做,显然是LCA裸题,设dis[u]代表u点到根节点的距离,则有:$dis(u, v) = dis[u]+dis[v]-2*dis[LCA(u,v)]$,然后考虑第二种操作,可以发现当你改变一条边的长度(权值)的时候,会对这条边下的整颗子树造成影响,比如u——v的一条边,且u比v更靠近根节点的话,那么造成的影响是v所在整颗子树的影响,即子树是深度较深的点所连接的。由于是整颗子树,明显可以用DFS序来转换后用树状数组或者线段树来维护这个DFS序列即dis数组,操作就是区间更新,单点查询——改变边长度的时候显然整个子树序列区间长度均改变了$w'-w$。好像这题一般写法是树链剖分,蒟蒻我不会……就用树状数组好了,树状数组怎么区间更新?左端点处+val,右端点+1处-val即可。

ZZ地WA了一下午发现是把D数组当作深度数组来用了……

代码:

#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <sstream>
#include <numeric>
#include <cstring>
#include <bitset>
#include <string>
#include <deque>
#include <stack>
#include <cmath>
#include <queue>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
#define fin(name) freopen(name,"r",stdin)
#define fout(name) freopen(name,"w",stdout)
#define CLR(arr,sum) memset(arr,sum,sizeof(arr))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
typedef pair<int, int> pii;
typedef long long LL;
const double PI = acos(-1.0);
const int N = 100010;
struct edge
{
int to, nxt, d;
edge() {}
edge(int _to, int _nxt, int _d): to(_to), nxt(_nxt), d(_d) {}
};
edge E[N << 1];
int head[N], tot;
int ver[N << 1], D[N << 1], F[N], sz, dp[N << 1][19];
int W[N], A[N], B[N];
int L[N], R[N], T[N], ts;
bitset<N>vis; void init()
{
CLR(head, -1);
tot = 0;
sz = 0;
ts = 0;
CLR(T, 0);
vis.reset();
}
void update(int k, int v)
{
while (k < N)
{
T[k] += v;
k += (k & -k);
}
}
int query(int k)
{
int ret = 0;
while (k)
{
ret += T[k];
k -= (k & -k);
}
return ret;
}
inline void add(int s, int t, int d)
{
E[tot] = edge(t, head[s], d);
head[s] = tot++;
}
void dfs(int u, int d, int sumdis)
{
ver[++sz] = u;
D[sz] = d;
F[u] = sz; L[u] = ++ts;
update(L[u], sumdis);
update(L[u] + 1, -sumdis);
vis[u] = 1;
for (int i = head[u]; ~i; i = E[i].nxt)
{
int v = E[i].to;
if (!vis[v])
{
dfs(v, d + 1, sumdis + E[i].d);
ver[++sz] = u;
D[sz] = d;
}
}
R[u] = ts;
}
void RMQinit(int l, int r)
{
int i, j;
for (i = l; i <= r; ++i)
dp[i][0] = i;
for (j = 1; l + (1 << j) - 1 <= r; ++j)
{
for (i = l; i + (1 << j) - 1 <= r; ++i)
{
int a = dp[i][j - 1], b = dp[i + (1 << (j - 1))][j - 1];
dp[i][j] = D[a] < D[b] ? a : b;
}
}
}
int LCA(int u, int v)
{
int l = F[u], r = F[v];
if (l > r)
swap(l, r);
int len = r - l + 1;
int k = 0;
while (1 << (k + 1) <= len)
++k;
int a = dp[l][k], b = dp[r - (1 << k) + 1][k];
return D[a] < D[b] ? ver[a] : ver[b];
}
int main(void)
{
int n, q, s, i, a, b, w;
while (~scanf("%d%d%d", &n, &q, &s))
{
init();
for (i = 1; i <= n - 1; ++i)
{
scanf("%d%d%d", &a, &b, &w);
A[i] = a;
B[i] = b;
W[i] = w;
add(a, b, w);
add(b, a, w);
}
dfs(s, 1, 0);
RMQinit(1, sz);
while (q--)
{
int ops;
scanf("%d", &ops);
if (ops == 0)
{
int v;
scanf("%d", &v);
printf("%d\n", query(L[s]) + query(L[v]) - 2 * query(L[LCA(s, v)]));
s = v;
}
else
{
int k, neww;
scanf("%d%d", &k, &neww);
int u = A[k], v = B[k];
if (L[u] > L[v])
swap(u, v);
update(L[v], neww - W[k]);
update(R[v] + 1, -(neww - W[k]));
W[k] = neww;
}
}
}
return 0;
}

POJ 2763 Housewife Wind(DFS序+LCA+树状数组)的更多相关文章

  1. BZOJ 4999: This Problem Is Too Simple! DFS序+LCA+树状数组+离线

    Code: #include<bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) , ...

  2. HDU 6203 ping ping ping(dfs序+LCA+树状数组)

    http://acm.hdu.edu.cn/showproblem.php?pid=6203 题意: n+1 个点 n 条边的树(点标号 0 ~ n),有若干个点无法通行,导致 p 组 U V 无法连 ...

  3. HDU 3966 dfs序+LCA+树状数组

    题目意思很明白: 给你一棵有n个节点的树,对树有下列操作: I c1 c2 k 意思是把从c1节点到c2节点路径上的点权值加上k D c1 c2 k 意思是把从c1节点到c2节点路径上的点权值减去k ...

  4. BZOJ 2819: Nim dfs序维护树状数组,倍增

    1.随机选两个堆v,u,询问若在v到u间的路径上的石子堆中玩Nim游戏,是否有必胜策略,如果有,vfleaking将会考虑将这些石子堆作为初始局面之一,用来坑玩家.2.把堆v中的石子数变为k. 分析: ...

  5. 【Tyvj2133&BZOJ1146】网络管理Network(树套树,DFS序,树状数组,主席树,树上差分)

    题意:有一棵N个点的树,每个点有一个点权a[i],要求在线实现以下操作: 1:将X号点的点权修改为Y 2:查询X到Y的路径上第K大的点权 n,q<=80000 a[i]<=10^8 思路: ...

  6. 【BZOJ1103】大都市meg(DFS序,树状数组)

    题意:有一颗树,1号点为根,保证编号小的点深度较小,初始状态每条边都没有被标记,要求实现两个操作在线: A:将连接x,y的边标记 W:查询从1到x的路径上有多少条边未被标记 n<=2*10^5 ...

  7. 2018.06.30 BZOJ4765: 普通计算姬(dfs序+分块+树状数组)

    4765: 普通计算姬 Time Limit: 30 Sec Memory Limit: 256 MB Description "奋战三星期,造台计算机".小G响应号召,花了三小时 ...

  8. 【POJ3321】Apple Tree(DFS序,树状数组)

    题意:给一棵n个节点的树,每个节点开始有一个苹果,m次操作 1.将某个结点的苹果数异或 1 2.查询一棵子树内的苹果数 n,m<=100000   思路:最近一段时间在思考树上统计问题的算法 发 ...

  9. BZOJ 1103: [POI2007]大都市meg(dfs序,树状数组)

    本来还想链剖的,结果才发现能直接树状数组的= = 记录遍历到达点与退出点的时间,然后一开始每个到达时间+1,退出时间-1,置为公路就-1,+1,询问直接点1到该点到达时间求和就行了- - CODE: ...

随机推荐

  1. C#关系运算符

    一.C#关系运算符 C#语言的关系运算符是对操作数的比较运算. 二.示例 using System;using System.Collections.Generic;using System.Linq ...

  2. 自封装的AJAX

    /* * *create by royal in 2019/1/23 * *royalAjax 自封装ajax函数 * *paramsObj JSON类型参数 *require params: * t ...

  3. Java 批量文件压缩导出,并下载到本地

    主要用的是org.apache.tools.zip.ZipOutputStream  这个zip流,这里以Execl为例子. 思路首先把zip流写入到http响应输出流中,再把excel的流写入zip ...

  4. 认识mysql(1)

    ---恢复内容开始--- 1.MySQL概述 1.什么是数据库? 存储数据的仓库 2.都有哪些公司在用数据库? 金融机构.游戏公司.购物网站.论坛网站... 3.提供数据库服务的软件? 1.软件分类 ...

  5. DC84问

    1.1 什么是DC?DC(Design Compiler)是Synopsys公司的logical synthesis工具,它根据design description和design constraint ...

  6. Yii2.X 如何避开pathinfo不能处理中文名开头的bug

    /** * @return string original file base name */ public function getBaseName() { // https://github.co ...

  7. JZOJ 5455. 【NOIP2017提高A组冲刺11.6】拆网线

    455. [NOIP2017提高A组冲刺11.6]拆网线 (File IO): input:tree.in output:tree.out Time Limits: 1000 ms  Memory L ...

  8. ecshop里操作session与cookie

    目录 操作session 操作cookie html模板里提交保存用用户名 php里 js里保存cookie js里读取cookie html模板里smart的保留变量 html模板里取session ...

  9. debug模式开启会做哪些事(源码分析)

    以往开发中不管是django框架下开发还是其它框架下开发, 只知道在开发阶段要开启debug模式, 却一直没有深究它会我们做哪些事, 今天使用tornado时偶然看到源码中写的很清楚,故写下来加深印象 ...

  10. 1022 D进制的A+B (20)(20 分)

    1022 D进制的A+B (20)(20 分) 输入两个非负10进制整数A和B(<=\(2^{30}-1\)),输出A+B的D (1 < D <= 10)进制数. 输入格式: 输入在 ...